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Abstract

Duplicate Data Elimination (DDE) is our method for
identifying and coalescing identical data blocks in Storage
Tank, a SAN file system. On-line file systems pose a unique
set of performance and implementation challenges for this
feature. Existing techniques, which are used to improve
both storage and network utilization, do not satisfy these
constraints. Our design employs a combination of con-
tent hashing, copy-on-write, and lazy updates to achieve its
functional and performance goals. DDE executes primarily
as a background process. The design also builds on Storage
Tank’s FlashCopy function to ease implementation.1

We include an analysis of selected real-world data sets
that is aimed at demonstrating the space-saving potential of
coalescing duplicate data. Our results show that DDE can
reduce storage consumption by up to 80% in some applica-
tion environments. The analysis explores several additional
features, such as the impact of varying file block size and
the contribution of whole file duplication to the net savings.

1 Introduction

Duplicate data can occupy a substantial portion of a stor-
age system. Often the duplication is intentional: files are
copied for safe keeping or for historical records. Just as
often, the duplicate data appear through independent chan-
nels: individuals who save the same email attachments or
who download the same files from the web. It seems in-
tuitive that addressing all of this unrecognized redundancy
could result in storage resources being used more effi-
ciently.

Our research goal is to reduce the amount of duplicated

1Storage Tank technology is available today in the IBM Total Storage
SAN File System (SANFS). However, this paper and research isbased on
underlying Storage Tank technology and may not become part of the IBM
TotalStorage SAN File System product.

data in on-line file systems without significantly impacting
system performance. This performance requirement is what
differentiates our approach, which we call Duplicate Data
Elimination (DDE), from those used in backup and archival
storage systems [1, 7, 23]. To minimize its performance
impact, DDE executes primarily as a background process
that operates in a lazy, best-effort fashion whenever possi-
ble. Data is written to the file system as usual, and then
some time later, background threads find duplicates and co-
alesce them to save storage. DDE is transparent to users. It
is also flexible enough to be enabled and disabled on an ex-
isting file system without disrupting its operation, and flex-
ible enough to be used on parts of the file system, such as
select directories or particular file types.

Duplicate Data Elimination (DDE) is designed for IBM
Storage Tank [17], a heterogeneous, scalable SAN file sys-
tem. In Storage Tank, file system clients coordinate their
actions through meta-data servers, but access the storage
devices directly without involving servers in the data path.
DDE uses three key techniques to address its design goals:
content-based hashing, copy-on-write (COW), and lazy up-
date. DDE detects duplicate data on the logical block level
by comparing hashes of the block contents; it guarantees
consistency between block contents and their hashes by us-
ing copy-on-write. Data is coalesced by changing corre-
sponding file block allocation maps. COW and lazy update
allow us to update the file block allocation maps without
revoking the file’s data locks. Together these techniques
minimize DDE’s performance impact.

Figure 1 shows an example of coalescing duplicate data
blocks in an on-line file system. Before coalescing, filesF1,
F2 andF3 consume 11 blocks. However, they each contain
a common piece of data that is three blocks in size. Clients
are unaware of this duplication when they write these files.
The server detects the common data later and coalesces the
identical blocks. After coalescing,F1–F3 consume only five
blocks in total by sharing the same three blocks. Six blocks
are saved, resulting in a 55% storage reduction.
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Figure 1. An example of coalescing duplicate
data blocks.

2 Background

IBM Storage Tank is a multi-platform, scalable file sys-
tem that works with storage area networks (SANs) [17]. In
Storage Tank, data is stored on devices that can be directly
accessed through a SAN, while meta-data is managed sep-
arately by one or more specialized Storage Tank meta-data
servers. Storage Tank clients are designed to direct all meta-
data operations to Storage Tank servers and to direct all data
operations to storage devices. Storage Tank servers are not
involved in the data path.

The current version of Storage Tank works with ordi-
nary block-addressable storage devices such as disk drives
and RAID systems. The basic I/O operation unit in Storage
Tank is a block. The storage devices are required to have no
more intelligence than the ability to read and write blocks
from the volumes (LUNs) they present. Storage Tank file
data is also managed in block units. The size of a file block
is typically a multiple of the device block size.

Storage Tank exposes three new abstractions calledfile
sets, storage pools, andarenas. These are in addition to the
traditional abstractions found in file systems such as files,
directories, and volumes. A file set is a subtree of the global
namespace. It groups a set of Storage Tank files and direc-
tories for the purpose of load balancing and management. A
storage pool is a collection of one or more volumes. It pro-
vides a logical grouping of the volumes for the allocation
of space to file sets. A file set can cross multiple storage
pools. An arena provides the mapping between a file set
and a storage pool. As such, there is one arena for each
file set that has files in a particular storage pool. The arena
abstraction is strictly internal to the Storage Tank server,
but is an important element in duplicate data elimination.
Using an arena, Storage Tank can track the used and free
space owned by a file set in a storage pool, and specifies the
logical to physical mapping of space in the file set to the
volumes in the storage pool.

The Storage Tank Protocol provides a rich locking
scheme that enables file sharing among Storage Tank clients
or, when necessary, allows clients to have exclusive ac-

cesses to files [6, 8, 9]. A Storage Tank server grants locks
to clients, and the lock granularity is per file. There are three
file lock modes in Storage Tank: 1) exclusive (X), which al-
lows a single client to cache both data and metadata, which
it can read and modify; 2) Shared Read (SR), which allows
clients to cache data and metadata for read operations, and
3) Shared Write (SW), in which mode clients cannot cache
data but can cache metadata in read-only mode. The Stor-
age Tank Protocol also provides copy-on-write capability to
support file system snapshots. The server can mark blocks
as read-only to enforce copy-on-write.

Storage Tank technology is available today in the IBM
Total Storage SAN File System (SANFS). However, this pa-
per and research is based on underlying Storage Tank tech-
nology and may not become part of the IBM TotalStorage
SAN File System product.

3 Related Work

Data duplication is ubiquitous. Different techniques
have been proposed to identify commonality in data, and
to exploit this knowledge for reducing storage and network
resource consumption due to storing and transferring dupli-
cate data.

Our work was directly inspired by Venti [23]. Venti is
a network storage system intended for archival data. In
Venti, the unique SHA-1 [3] hash of a block acts as the
block identifier, which is used in place of the block ad-
dress for read and write operations. Venti also implements
a write-once policy that prohibits data from being deleted
once it is stored. This write-once policy becomes practical,
in part, because Venti stores only one copy of each unique
data block.

In on-line file systems, performance is essential and data
is dynamic and ready to change. This is radically differ-
ent from the requirements in archival and backup systems,
where data is immutable and performance is less of a con-
cern. In our design, duplicate data is also detected on the
block level, but in the background. Data is still addressed
as usual by the block where it is stored, so data accesses
have no extra hash-to-block index searching overheads as
in Venti. In turn, it determines that data duplication detec-
tion and coalescing is an after-effect effort,i.e. it is done af-
ter clients have written data blocks to storage devices. The
server also maintains a mapping function between block
hashes and blocks. A weaker variant of the write-once pol-
icy, copy-on-write (COW), is used to guarantee its consis-
tency. Unreferenced blocks due to deletion and COW can
be reclaimed.

Single instance store (SIS) [4] also detects duplicate data
in an after-effect fashion but on the file level. The tech-
nique is optimized for Microsoft Windows remote install
servers [18] that store different installation images. In this
scenario, the knowledge of file duplication is a priori and
files are less likely to be modified. In general on-line file
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systems, the granularity of file-level data duplication detec-
tion may be too coarse because any modification to a file
can cause the loss of the benefit of storage reduction.

LBFS [20] and Pastiche [10] detect data duplication at
the granularity of variable-sized chunks, whose boundary
regions, calledanchors, are identified by using the tech-
niques of shingling [16] and Rabin fingerprints [24]. This
technique is suitable for backup systems and low-bandwidth
network environments, where the reduction of storage and
network transmission is more important than performance.

Delta compression is another technique that can effec-
tively reduce duplicate data, thus the requirements of stor-
age and network bandwidth [1, 7, 19, 25]. When a base ver-
sion of a data object exists subsequent versions can be repre-
sented by changes (deltas) to save both storage and network
transmission. Delta compression, in general, requires some
prior knowledge of data object versioning. It cannot explore
common data across multiple files and a change of a (base)
file may cause recalculating deltas for other files. In DERD
(Delta-Encoding via Resemblance Detection) [12], similar
files can be identified as pairs by using data similarity de-
tection techniques [5, 16] without having any specific prior
knowledge.

Some file systems provide on-line compression capabil-
ity [15, 21]. Although it can effectively improve storage
efficiency, this technique has significant run-time compres-
sion and decompression overheads. On-line compression
explores intra-file compressibility and cannot take advan-
tage of common data across files.

The techniques of naming and indexing data objects
based on their content hashes are also found in several other
systems. In the SFS read-only file system [13], blocks are
identified by their SHA-1 hashes and the block hashes are
hashed recursively to build up more complex structures.
The Stanford digital library repository [11] uses the cyclic
redundancy check (CRC) values of data objects as their
unique handles. Content-derived names [2, 14] take a sim-
ilar approach to address the issue of naming and managing
reusable software components.

4 Design of Duplicate Data Elimination

Our design goal is to transparently reduce duplicate data
in Storage Tank as much as possible without penalizing sys-
tem performance significantly. Instead of finding data du-
plication at the first spot, we delay this duplication detec-
tion and identify and eliminate duplicate data when server
loads are low. In this way, we minimize the performance
impact of duplicate data elimination (DDE). In our design,
we use three techniques: content-based hashing, copy-on-
write (COW), and lazy update.

Duplicate data blocks are detected by the Storage Tank
server. A client uses a collision-resistant hash function to
digest the block contents it writes to storage devices and
returns their hashes to the server. Such a unique hash is

called thefingerprint of a block. The server compares
block fingerprints and coalesces blocks with the same fin-
gerprint (and the same content) by changing corresponding
file block allocation maps. The server guarantees consis-
tency between block contents and their fingerprints by di-
recting clients to perform copy-on-write. The server also
maintains a reference count for each block and postpones
the reclamation of unreferenced blocks. These techniques
allow the server to update file block allocation maps with-
out revoking any outstanding data locks on them.

Figure 2 shows the basic idea of duplicate data block
elimination in a live file system. The client holds an ex-
clusive (X) lock on file A and a shared-read (SR) lock on
file B. These lock modes are described in Section 2. File
A and B have the same data stored in blocks 100 and 150
respectively. Before duplicate block coalescing, the server
and the client share the same view of files and file block al-
location maps. The server finds duplicate data and changes
the block allocation map of file B to reference block 100
without updating the client. Even though the client has a
stale view on file B, it can still read out the correct data be-
cause block 150 is not reclaimed immediately. When the
client modifies block 100 of file A, it writes the new content
to another block and keeps the content of block 100 intact.
Therefore, the content and the fingerprint of block 100 are
still consistent and file B still references the right block.

4.1 Duplicate Data Detection

The most straightforward and trusted way of duplicate
data detection is bytewise comparison. Unfortunately, it is
expensive. An alternative method is to digest data contents
by hashing them to much shorter fingerprints and detect du-
plicate data by comparing their fingerprints. As long as the
probability of hash collisions is vanishingly small, we can
be confident that two sets of data content are identical if
their fingerprints are the same.

In our design, duplicate data is detected on the block
level, although maintaining a fingerprint for each block im-
poses a large amount of bookkeeping information on the
system. Storage Tank is based on block-level storage de-
vices, and blocks are the basic operation units. Block-
level detection avoids unnecessary I/Os required by other
approaches based on files [4] or variable-sized chunks [10,
20], in which the client may have to read other disk blocks
before it can recalculate fingerprints due to data boundary
mis-alignments. Data duplication detection that is based
on blocks has finer granularity and, therefore, higher possi-
bility of storage reduction than techniques based on whole
files [4]. Approaches based on variable-sized chunks [10,
20] require at least as much bookkeeping information as the
block-based approaches because they tend to limit the av-
erage chunk size to obtain a reasonable chance of detecting
duplicate data. Chunk-based approaches also need a totally
different file block allocation map format from the existing
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Figure 2. An example of coalescing duplicate data blocks in a live file system.

Storage Tank implementation, which makes them difficult
to employ.

DDE uses the SHA-1 hash function [3] to fingerprint
block data contents. SHA-1 is a one-way secure hash func-
tion with a 160-bit output. Even in a large system that con-
tains an exabyte of data (1018 bytes) as 4 kilobyte blocks
(roughly 3×1014 blocks), the probability of hash collisions
using the SHA-1 hash function is less than 10−19, which is
at least 5–6 orders of magnitude lower than the probability
of an undetectable disk error. To date, there are no known
collisions by this hash function. Therefore we can be confi-
dent that two blocks are identical if their SHA-1 hashes are
the same. In addition, the system could perform bytewise
comparisons before coalescing blocks as a cross check.

In Storage Tank, data and meta-data management are
separated, and Storage Tank servers are not involved in the
data path during normal operations. Disks have little intelli-
gence and cannot detect duplicate data by themselves. Even
with smarter disks, without extensive inter-disk communi-
cations, each disk would know only its local data finger-
prints, which would reduce the chances of detecting dupli-
cation. In our design, a client calculates fingerprints of the
blocks it writes to storage devices and returns them to the
server. Software implementations of SHA-1 are quite effi-
cient and hashing is not a performance bottleneck. Storage
Tank servers have a global view of the whole system and
are appropriate for data duplication detection.

4.2 Consistency of Data Content and Fingerprints

After we hash the data content of a block, the fingerprint
becomes an attribute of the block. Because the fingerprint
is eventually stored on the server and the block can be di-
rectly accessed and modified by clients, the consistency of
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Figure 3. Maintaining consistency between
fingerprint and block content under (a)
update-in-place and (b) copy-on-write.

the fingerprint and the data content of a block becomes a
problem. In Storage Tank, a client can modify a block by
two approaches: update-in-place and copy-on-write.

4.2.1 Update-in-Place

In Storage Tank, a client can directly modify a block if the
block is writable,i.e. it writes new data to the same block.
This results in inconsistency between the server-side block
fingerprint and the block content until the client returns the
new fingerprint to the server, as shown in Figure 3(a). The
fingerprint of block 100 that the server keeps is inconsis-
tent with the block content until the client returns the latest
fingerprint. During the period of inconsistency, any data du-
plication detection related to this block gives false results.

We can detect this potential inconsistency by checking
data locks on the file to which the block belongs. Because
the granularity of file data locks in Storage Tank is per file,
the server cannot trust all of the block fingerprints of a file
with an exclusive data lock on it.
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To avoid erroneous duplication detection and coalescing,
we could simply delay DDE on those files with exclusive
or shared-write locks. This is feasible in some workloads
where only a small fraction of files are active concurrently.
However, this approach cannot save any storage in some im-
portant environments, such as databases, where applications
always hold locks on their files.

Another approach is to revoke data locks on files to force
clients to return the latest block fingerprints. This causes
two technical problems: lock checking and lock revocation.
To check file locks, every block has to maintain a reverse
pointer to the file to which it belongs, which makes the
bookkeeping information of a block even larger. To guar-
antee consistency between fingerprints and block contents,
every block-coalescing operation has to revoke file locks, if
necessary, which can severely penalize the system perfor-
mance. Therefore, eliminating duplicate data blocks under
the update-in-place scenario is inefficient, at best, or impos-
sible.

4.2.2 Copy-on-Write

The basic idea of our work is to eliminate duplicate
data blocks by comparing their fingerprints. By using a
collision-resistant hash function with a sufficiently large
output, such as SHA-1, the fingerprints are considered to
be distinct for different data. Therefore, the fingerprint can
serve as a unique virtual address for the data content of a
block. The mapping function from the virtual address to the
physical block address is implicitly provided by the block
address itself. Our aim is to make the mapping function
nearly one-to-one,i.e. each virtual address is mapped to
only one physical address.

However, update-in-place violates the basic concept of
content-addressed storage by making the mapping func-
tion inconsistent. Conceptually, if the content of a block is
changed, the new content should be mapped to a new block
instead of the original one. Consequently, a client should
write modified data to new blocks, which implies a write-
once policy, as in Venti [23]. However, write-once keeps
all histories of data, which is unnecessary and expensive in
on-line file systems. Therefore, we use a weaker variant
of write-once, copy-on-write. This technique can guarantee
the consistency of the mapping function as long as the orig-
inal blocks are not reclaimed, as shown in Figure 3(b). The
fingerprint of block 100 that the server keeps is still consis-
tent with the block content until block 100 is reclaimed.

Apparently, copy-on-write has a noticeable overhead on
normal write operations. Every block modification requires
free block allocation because the modified content needs to
be written to a new block. However, this cost is less signif-
icant than we thought. Some applications, such as Emacs
and Microsoft Word, write the whole modified file into a
new place, in which case there is no extra cost for COW.
The server could also preallocate new blocks to the client
that acquires an exclusive or shared-write lock. The most

promising approach to alleviate the extra allocation over-
head of COW is for the clients to maintain a private storage
pool on behalf of the server from which they could allocate
locally. Therefore, there is almost no extra cost for COW.

4.3 Lazy Lock Revocation and Free Space Recla-
mation

The server coalesces duplicate data blocks and reduces
storage consumption by updating file block allocation maps
to point to one copy of the data and reclaim the rest. During
file block allocation map updates, the server does not check
whether any client holds data locks on the files. Therefore,
the block allocation maps held by the server and clients
can be inconsistent, as illustrated in Figure 2. However,
we postpone the reclamation of the dereferenced blocks.
Therefore, clients holding stale file block allocation maps
can still read the correct data from these blocks. At some
particular time,e.g. midnight, or when the file system is
running low on free space, the server revokes all data locks
held by clients and frees those dereferenced blocks.

5 Process of Duplicate Data Elimination

Duplicate data elimination is done by the coordination
between clients and servers. Simply speaking, clients per-
form copy-on-write operations and calculate and return
block SHA-1 hashes to servers. Servers log clients’ activ-
ities and identify and coalesce duplicate data blocks in the
background. Users are unaware of such operations.

5.1 Impact on Client’s Behaviors

In addition to its normal behaviors, a client calculates
SHA-1 fingerprints for the data blocks it writes and re-
turns the fingerprints to the server. Because copy-on-write
is used (Section 4.2.2), the client does not write modified
data blocks back to their original disk blocks; instead, mod-
ified data is written to newly-allocated blocks. As long as
the client holds a file data lock, further modifications to the
same logical block are written to the same newly-allocated
disk block. On an update to the server, the client sends the
latest block fingerprints along with the block logical offsets
within the file and the original physical locations of modi-
fied data blocks.

5.2 Data Structures on the Server

We discuss necessary data structure supports on the
server that facilitate duplicate data block detection and elim-
ination. Essentially, a reference count table, a fingerprint
table and its secondary index maintain attributes associated
with blocks,i.e. reference counts and fingerprints, as shown
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Figure 4. Data structures for storing and re-
trieving block attributes.
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Figure 5. Data structures for logging recent
clients’ activities.

in Figure 4; and a dereference log and a new fingerprint log
record recent clients’ activities, as shown in Figure 5.

The scope of duplicate data elimination is an important
design decision. The larger the scope, the higher the de-
gree of data duplication can be, thus providing more bene-
fit. However, for various reasons, people may want to share
data only within their working group or their department.
Therefore, we limit data duplication detection and elimina-
tion within a file set, which essentially is a logical subset
of the global namespace. Even within a file set, files can
be stored in different storage pools that may belong to dif-
ferent storage classes, which have different characteristics
in access latency, reliability, and availability. Sharingdata
across storage classes can result in noticeable impacts on the
quality of storage service. Therefore, we further narrow the
scope of DDE within an arena, which provides the mapping
between a file set and a storage pool. The data structures we
will discuss soon are per arena.

Data are not equally important. Detecting and coalescing
temporary, derived, or cached data is less beneficial. Be-
cause Storage Tank provides policy-based storage manage-
ment, a system can be easily configured to store these data
in less reliable and so cheaper storage pools, while storing
important data in more reliable storage pools. DDE within
an arena can take advantage of this flexibility.

Because an arena allows the logical to physical mapping
of space in the file set to the LUNs in the storage pool, it
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Figure 6. A block is in one of the following
states: unallocated, allocated, referenced,
and unreferenced.

is equivalent to referencing a block by its physical location
and by its logical offset within an arena. For convenience,
we will reference an allocated physical block by its logical
offset within the arena.

To keep the per-arena data structures to an optimal size,
we use 32-bit integers to represent logical block offsets
within an arena. Therefore, an arena can contain no more
than 232 physical blocks. For 4 KB blocks, an arena can
manage 16 TB storage, which is large enough for most ap-
plications and environments. However, there is no such a
limitation on the capacity of a file set because it can cross
multiple storage pools and can consist of multiple arenas.

5.2.1 Reference Count Table

With block coalescing and sharing, a physical block can be
referenced multiple times by different files or even one file.
Therefore, a reference count is necessary for each block in
the arena. From the viewpoint of DDE, a block can be in
one of the following four states: 1) free – the block is un-
allocated; 2) allocated – the block is allocated but unused
or it contains valid data that is unhashed; 3) referenced –
the block contains valid data, which has been hashed, and is
referenced at least once; and 4) unreferenced – the block is
allocated and hashed, but has no file referencing it and can
be freed or reused. Figure 6 illustrates the four states and
the transitions among them.

Without accessing the arena block allocation map, we
cannot know whether a block is allocated or not. Fortu-
nately, we are interested in the validity of block fingerprints
in our work. Therefore, blocks that are in the first two states
(free and allocated) can be merged into one state, invalid,
because they contain no valid fingerprints. The reference
count of a block indicates its state: 1) invalid, where the ref-
erence count is 0, 2) referenced, where the reference count
is no less than 1, or 3) unreferenced, where the reference
count is−1. The initial state of a block is invalid because it
contains no valid fingerprint until a client calculates it.

A reference count table keeps the reference count for
each block in the arena. The table is organized as a linear
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array, which is indexed by the 32-bit logical block offset
within the arena. Each entry in this table is also a 32-bit
integer, indicating the state of the corresponding block. The
size of the table is up to 232

× 4 bytes= 16 GB. Because
block reference counts are crucial to data integrity, any up-
date on them should be transactional.

A block may contain valid data but has no fingerprint
associated with it. Note that the fingerprint of a block is
calculated when it is written. If a block is written before
the server turns on this feature, it has no fingerprint on the
server. A utility running on the server could ask clients to
read those data blocks and calculate their fingerprints on
behalf of the server.

5.2.2 Fingerprint Table

The fingerprint table keeps unique fingerprints of the blocks
in an arena. Each fingerprint in this table is associated with
a unique physical block. In other words, the table main-
tains a one-to-one mapping function between fingerprints
and physical blocks. We detect and coalesce duplicate data
blocks when we merge the new fingerprint log to this ta-
ble. The fingerprint table is also organized as a linear array
and indexed by the 32-bit logical block offset. Each entry
contains a 160-bit SHA-1 fingerprint. A fingerprint is valid
only if its block reference count is no less than 1.

The size of the table is up to 232
×20 bytes= 80 GB, and

it cannot fit in memory. Fortunately, disk block accesses
have sequential patterns due to sequential block allocations
and file accesses. Therefore, we organize the secure finger-
print table linearly to facilitate comparisons under sequen-
tial block accesses. If two disk blocks contain the same
content, it is likely that their consecutive blocks also have
identical contents. The linear structure makes consecutive
fingerprint comparisons efficient because all related entries
are in memory.

Conceptually, both the reference count table and the fin-
gerprint table are for describing block attributes and can be
merged into one table. Because their sizes are potentially
large, and the block reference count is accessed more fre-
quently than the fingerprint, we store them separately to op-
timize system memory usage.

5.2.3 Secondary Index to Fingerprint Table

Although the linear fingerprint table favors sequential
searching, it is difficult to look for a particular fingerprint
in this table. Therefore, we also index the table by partial
bits of the SHA-1 fingerprint to facilitate random searching.
A static hash index is used for this purpose. The hash buck-
ets are indexed by the first 24 bits of the SHA-1 fingerprint.
Each bucket contains a 32-bit block pointer. Therefore,
the size of the first level index is 224

× 4 bytes= 64 MB,
which can well fit in memory. Each entry in the bucket
block contains a 32-bit in-arena logical block offset, indi-
cating the block that the fingerprint is associated with, and
the next 32 bits of the SHA-1 fingerprint. Because an arena
contains no more than 232 blocks, the average number of

hash entries in a bucket is 232/224 = 28 = 256. When the
bucket block size is 4 KB, the average block utilization is
(256× (4+ 4))/4096= 50%. For an arena with capac-
ity much less than 16 TB, multiple buckets can share one
bucket block for better storage and memory utilization.

5.2.4 Dereference Log
The dereference log records the in-arena logical offsets of
blocks that are recently deleted, dereferenced due to COW
by clients, or dereferenced due to block coalescing by the
server. We will discuss the third case in greater details in
Section 5.3.3. This log is also calledsemi-free listbecause
the blocks in this list could be freed if there is no longer any
reference to them. Each entry in this log is a 32-bit integer.
To avoid storage leakage, any update on this log should be
transactional.

5.2.5 New Fingerprint Log
The new fingerprint log records clients’ recent write activi-
ties. Each entry in this log includes a 64-bit file ID, a 64-bit
logical block offset within the file, a 32-bit logical offset
within the arena, and a 160-bit SHA-1 fingerprint. Append-
ing new entries to this log can be non-transactional for the
performance purpose because losing the most recent entries
only causes losing some opportunities for storage reduction.

5.3 The Responsibilities of the Server

The server enforces a client’s copy-on-write behaviors
by marking the copy of the file block allocation map in
the message buffer as read-only when it responds to a file
data lock request from the client. The server immediately
logs clients’ recent activities, such as delete and write op-
erations. In our design, DDE runs in a best-effort fashion.
Therefore, the server lazily detects and coalesces duplicate
data blocks and reclaims unused blocks. It also maintains
block reference counts and fingerprints correspondingly.

5.3.1 Logging Recent Activities
When the server receives a dirty file block allocation map
from a client, it compares it with the one on the server. If a
block is marked as unused due to copy-on-write, the server
first checks whether it is still referenced by the server-side
file block allocation maps. If referenced, the in-arena logi-
cal offset of the unused block is appended to the dereference
log; if not (it is possible due to duplicate block coalescing
without lock revocation), the block currently referenced by
the server-side block allocation map is logged because it is
dereferenced by recent modifications on the corresponding
file logical block. The unused block returned from the client
is not logged because it has been dereferenced due to block
coalescing. Other unused blocks are logged.

For each recently-written block, the server also appends
an entry to the new fingerprint log, including the identifier
of the file to which it belongs, its logical block offset within
the file, its logical block offset within the arena, and its fin-
gerprint.
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Figure 7. Log epochs.

5.3.2 Log Epoch and Preprocessing
We periodically checkpoint the dereference log and the new
fingerprint log for two reasons. First of all, the data duplica-
tion detection and elimination processes run in a best-effort
and background fashion and are unlikely to keep up with
the most recent clients’ activities. Logging and checkpoint-
ing these activities allow the server to detect and coalesce
duplicate data blocks during its idle time. By checkpointing
the log to epochs, we also limit the number of activities the
server processes at a time. Second, recently-written blocks
are likely to be modified again. Trying to coalesce these
blocks is less beneficial. Therefore, we try to coalesce only
blocks in a stable epoch, as shown in Figure 7, whose life-
times have been long enough.

Assume that we want to merge the new fingerprint log
in epoch(t0,t1) to the fingerprint table. Because random
accesses on the fingerprint table are expensive, we try to
reduce the number of fingerprint comparisons by deleting
unuseful entries in the new fingerprint log in epoch(t0,t1).

First of all, we find overwritten file logical blocks by
sorting the log by file ID and logical block offset within
a file. We delete the older entries from the log and set their
block reference counts to be−1 (unreferenced). We set the
block reference counts of other entries in the log to be 1.
Second, we scan the dereference log in epoch(t0,t1). For
each entry in the log, we decrease its block reference count
by 1; if the count becomes less than 1, we set it to be−1.
Third, we compact the new fingerprint log(t0, t1) by delet-
ing those entries also in the dereference logs(t0,t1) and
(t1,t2). The matched entries in the dereference log(t1,t2)
are removed and their block reference counts are set to be
−1.

Note that a fingerprint in the fingerprint table becomes
invalid when its block reference count reaches−1. Con-
ceptually, we should also remove its index entry in the sec-
ondary index. However, we do not update the secondary
index during the log preprocessing because of performance
reasons. We postpone the removal of false indexes until the
duplicate block coalescing process notices them. False in-
dex removal also happens when a secondary index bucket
block becomes full.

5.3.3 Merging to Fingerprint Table
We detect and coalesce duplicate data blocks when we
merge the compacted new fingerprint log to the fingerprint
table. Figure 8 shows the processes of duplication detection
and coalescing.

For each entry in the log, we first check whether it has
a matching fingerprint in the fingerprint table. If not, we
insert the new fingerprint into the table and update the sec-

ondary index. If there is an identical fingerprint in the fin-
gerprint table, we check the validity of the fingerprint. If
the block reference count of the fingerprint is less than 1, the
primary block in the fingerprint table contains no valid data.
Therefore, we insert the new fingerprint into the table and
update the secondary index. We also need to delete the false
index in the secondary index because the previous matching
index leads to a block containing invalid data. If the block
reference count is no less than 1, we fetch the block allo-
cation map of the file to which the recently-written block
belongs, and check whether this block is still referenced by
this file. If not, this means that the corresponding logical
block in this file was modified after the current fingerprint
was returned, and we simply discard this coalescing opera-
tion. If the block is still referenced, we update the file block
allocation map by referencing the primary block in the fin-
gerprint table without checking or revoking data locks on
this file. We also increase the reference count of the primary
block and set the reference count of the coalesced block to
be−1. When a block is inserted into the fingerprint table,
either by adding a new entry or by coalescing to another
block, it is marked read-only in the block allocation map of
the file to which it belongs.

5.3.4 Free Space Reclamation
A free space reclamation process scans the reference count
table in the background. It logs the addresses of the blocks
with reference counts−1 and sets their reference counts to
0. At some particular time,e.g.midnight, or when the file
system is running low on free space, it revokes all data locks
and free these blocks.

6 Case Studies

We examined six data sets and studied their degrees of
data duplication and their compressibility under common
compression techniques. The data sets are summarized in
Table 1.

The first three data sets—SNJGSA, BVRGSABUILD,
and BVRGSATEST—are from file servers used by the
Storage Tank development team. The servers are used to
distribute and exchange data files, but are not used to hold
or archive the primary copy of important files. The first
server, SNJGSA, is a remote replica that holds a subset of
the daily builds that are stored on BVRGSABUILD, and a
subset of the test data that is on BVRGSATEST. In gen-
eral, the oldest files are deleted when the servers run low on
space. The files are almost never overwritten; they tend to
be created and then not modified until they are purged few
months later.

GENOME contains the human being genome sequence,
and is used at UCSC by various bioinformatics applications.
The genomic data is encoded in letters, when some single
letters and some letter combinations can repeat thousands
to millions of times but in fine granularities.
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Figure 8. Merge the new fingerprint log to the fingerprint tabl e.

Table 1. Data sets
Name Description Size (GB) Number of files

SNJGSA file server used by a development team 57 661,729
file server used by the development

BVRGSA BUILD team for code build 344 2,393,795
file server used by the development

BVRGSA TEST team for testing 215 115,141
GENOME human being genome data 348 889,884

local mirror of installation CDs
LTC MIRROR for different Linux versions 261 241,724

aggregation of ten personal
PERSONALWORKSTATIONS workstations 123 879,657

LTC MIRROR is a local ftp mirror of the IBM Linux
Technology Center (LTC) that includes Open Source and
IBM software for internal download and use. Among other
things, the ftp site holds the CD images (iso) of different
Red Hat Linux installations starting at RH7.1 up to RH9.

The last data set is an aggregation of ten personal work-
stations at the IBM Almaden Research Center that are run-
ning Windows. All systems are used for development as
well as for general purposes such as email, working doc-
uments, etc. We also present the results of these systems
when they are analyzed separately.

For each data set, we collected the size and the number
of files of the system. We calculated the amount of stor-
age that is required after eliminating data duplication at the
granularity of 1 KB blocks. To compare DDE with com-
mon compression techniques, we collected the compressed
file sizes, using LZO on 64 KB data blocks. LZO (Lempel-
Ziv-Oberhumer) is a data compression library that favors
speed over compression ratio [22]. We empirically found
that the compression capability of LZO is similar to other

techniques’ when the block size is large. In addition, we
calculated the storage reduction achieved by combining the
techniques of DDE and LZO. We also calculated what per-
centage of the storage is still required after eliminating only
whole file duplications.

Table 2 shows the percentage of storage required for
different data sets after using DDE at the granularities of
1 KB blocks and whole files, LZO on 64 KB blocks, and
the combination of DDE and LZO. DDE at 1 KB blocks
only requires one-fifth to one-third of the original storage
to hold the BVRGSABUILD and SNJGSA data sets and
it achieves one to two times higher storage efficiency (the
ratio of the amount of logical data to the amount of required
physical storage) than LZO at 64 KB blocks. This is be-
cause both data sets contain daily builds of the Storage Tank
codes that share lots of codes among versions; also the data
sets include very small files on average, making LZO in-
efficient. BVRGSATEST on the other hand, has on aver-
age larger files (1.9 MB) and the best reduction is achieved
when using the combination of LZO compression and DDE
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Table 2. DDE and compression results.
% of storage required % of storage required

% of storage required after eliminating % of storage required after after combining DDE
Name after DDE (1 KB blocks) whole file duplications LZO on 64 KB blocks and LZO on 64 KB blocks

SNJGSA 32% 55% 56% 30%
BVRGSA BUILD 21% 62% 67% 35%
BVRGSA TEST 69% 85% 53% 47%

GENOME 96% 98% 46% 44%
LTC MIRROR 80% 94% 98% 89%

PERSONALWORKSTATIONS 54% 69% 63% 43%

Table 3. DDE and compression results for personal workstati ons.
% of storage required % of storage required

% of storage required after eliminating % of storage required after after combining DDE
System after DDE (1 KB blocks) whole file duplications LZO on 64 KB blocks and LZO on 64 KB blocks

1 66% 71% 61% 43%
2 61% 78% 57% 43%
3 63% 77% 55% 41%
4 77% 91% 63% 55%
5 67% 92% 62% 53%
6 69% 77% 58% 48%
7 70% 80% 61% 49%
8 71% 78% 71% 55%
9 87% 91% 80% 74%
10 73% 84% 57% 48%

on 64 KB blocks. We will study the data set of SNJGSA in
greater detail in Section 6.1.

The genomic data set is encoded in letters. Some single
letters and letter combinations can repeat thousands to mil-
lions of times but at quite fine granularities. With this type
of data set it is unlikely to find duplications at the granu-
larities of kilobytes and DDE cannot improve storage effi-
ciency significantly. On the other hand, common compres-
sion techniques, such as LZO, are suitable for this data set.
The 4% of reduction by DDE is partially due to common
file headers and a common “special letter pattern” that fills
in gaps in the genomic sequence and partially due to dupli-
cated files that were created by analyzing applications.

Using LZO on the data set of LTCMIRROR barely re-
duces storage consumption because generally the files in the
Linux installation CD images have already been packaged
and compressed. DDE can take advantage of cross-file du-
plications, mainly from different installation versions,and
reduce storage consumption by 20%. A more interesting
data set is the actual installation of different Linux versions,
instead of the installation images. We plan to look into that
in the nearest future.

We also studied the storage requirements of ten personal
workstations after using different techniques on individual
systems, as shown in Table 3. On average 70% of stor-
age is required for individual systems after applying DDE
on them, from which more than half of the saving is due
to eliminating whole file duplications. LZO compression
can provide better storage efficiency on these systems. By
combining both LZO and DDE on 64 KB blocks, the per-
centage of storage required for individual systems is further

reduced to 51% on average. When aggregating files from all
machines together, which is potentially what happens with
enterprise-level backup applications, the aggregated stor-
age requirement of ten personal workstations by using DDE
drops significantly, from 70% to 54%, as shown as PER-
SONAL WORKSTATIONS in Table 2. This is because the
more individual systems are aggregated, the higher the de-
gree of data duplication is likely to be. Consequently, DDE
can result in tremendous storage savings for back up sys-
tems that potentially backup hundreds to thousands of per-
sonal workstations on a daily basis, which shows a very
good example of an application that could benefit from data
duplication elimination at the file system. Combining DDE
and LZO on 64 KB blocks can further reduce the storage
requirement to 43%.

The granularity of duplicate data detection affects the ef-
fectiveness of DDE. Table 2 shows that file-level detection
can lose up to 50–70% of the chance of finding duplicate
data at 1 KB blocks. We also noticed that using both DDE
and LZO on 64 KB blocks does not always generate bet-
ter results than using DDE solely. In general, smaller block
sizes favor DDE because of finer granularities on duplica-
tion elimination; larger block sizes favor LZO because of
more efficient encoding. In fact, DDE and LZO-like com-
pression techniques are orthogonal when they are operated
at the same data unit granularity because compression ex-
plores intra-unit compressibility and DDE explores inter-
unit duplications.
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6.1 Detailed Study on SNJGSA

Figure 9 shows the results of applying DDE to the
SNJGSA data set using a range of file system block sizes.
The results are given as a percentage of the data blocks that
are unique. The block size varies from 512 bytes to 64 KB.
As expected, the smallest block size works best because it
enables the detection of shorter segments of duplicate data.
Interestingly, DDE’s effectiveness starts to improve again
when the block size reaches 32 KB. The reason is that the
file system is “wasting” space using these larger blocks,
and DDE is proportionally coalescing more of this wasted
space. This effect begins to outpace the reduced number
of duplicate blocks due to coarser block granularities. Note
that Storage Tank does not support blocks sizes smaller than
4 KB; these results are included to show the savings we are
missing out on. The additional space saving potential of
smaller blocks is modest: 5%, for instance, between 1 KB
and 4 KB blocks in the SNJGSA1 data set.

SNJGSA’s usage pattern and its “FIFO” style space man-
agement allow us to use this data to simulate a growing file
system. Figure 10 shows the amount of space saved by DDE
as the file system, which starts empty, grows to eventually
contain all the files in the SNJGSA data set. The files are
added in order of their modified times (mtime). 4 KB blocks
are used. The rightmost value on the chart is 38%, which
matches the space savings shown in Figure 9.

If Figure 10 had shown a gradual improvement starting
at 100% (no compression) and monotonically decreasing to
38%, we could assert that duplication in this data set is inde-
pendent of time. This is the type of curve that would be gen-
erated if the files were inserted in random order rather than
being sorted by mtime. If the chart had shown a flat curve,
this would indicate that data duplication is highly correlated
in time, i.e. has strong temporal locality. The duplicate
blocks found in a new file would likely match blocks that
were added, for instance, within the last 24 hours, but very
unlikely to match blocks that were added a month ago. DDE
performs most efficiently on highly time correlated duplica-
tion because duplicate blocks tend to be coalesced within a
log epoch and require fewer updates to the fingerprint table.
At the same time, uncorrelated duplication allows DDE to
produce a continually improving compression ratio as the
data set grows.

The SNJGSA data set consists of 15 million 4 KB
blocks, among which 3.3 million are referenced only once.
Among the remaining 11.7 million blocks, only 2.5 mil-
lion are unique. Figure 11 shows the cumulative distribu-
tions of storage savings made by frequently occurring data
blocks. It reveals that only 1% of unique blocks contributes
to 29% of the total storage savings. This suggests us that
even a small amount of hash cache on the client side could
explore the frequency of data duplication and save actual
I/O on the first spot. Although we have not had the opportu-
nity to study the recency of data duplication, we believe that
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Figure 10. SNJGSA, percentage of unique
blocks in a simulated growing file system.

with careful design, the client-side hash cache can also take
advantage of this recency to improve system performance.
Furthermore, the spatial and temporal localities of duplicate
data generation are dominant factor of DDE’s performance
on the server side.

SNJGSA and BVRGSABUILD demonstrate applica-
tions that can substantially benefit from DDE. The engi-
neers using these file servers exploit storage space to make
their jobs easier. One way they do this is by creating hun-
dreds of “views” of their data in isolated directory trees,
each with a dedicated purpose. However, these pragmatic,
technology savvy users do not use a snap-shot facility to
create these views, or a configuration management package,
or even symbolic links. The engineers employ the most ro-
bust and familiar mechanisms available to them: copying
the data, applying small alterations, and leave the resultsto
linger indefinitely. In this environment, the file system is the
data management application, and DDE extends its reach.

7 Discussions

Often duplicate data copies are made for the purpose of
reliability, preservation, and performance. Typically, such
duplicate copies are and should be stored in different stor-
age pools. Since the technique of duplicate data elimination
is scoped to an arena, data on different storage pools will
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Figure 11. SNJGSA, cumulative contribution
to the total storage savings made by coalesc-
ing frequently occurring data blocks. Blocks
are sorted by their reference frequencies.

not be coalesced and its reliability, preservation, and the
performance of accessing data will not be affected. If the
duplicate data copies are made against inadvertent deletion
or corruption of file data, DDE allows copies to be made
without consuming additional storage space and still pro-
tects against deletion or corruption. However, DDE does
create an exposure to potential multiple file corruptions due
to a single block error.

DDE coalesces duplicate data blocks in files. It can re-
sult in file fragmentation thus degrade the system perfor-
mance due to non-contiguous reads. This can be alleviated
by only coalescing duplicate data with sizes of at leastN
contiguous blocks. In Section 6, we also found that the ma-
jority of duplicate blocks come from whole files, in which
cases reading those files has no additional seek overheads.
It is probable that DDE can reduce system write activities
if clients can detect duplicate data before writing to storage
devices, which will be discussed further in Section 8. DDE
can also potentially improve the storage subsystem cache
utilization because only unique data blocks will be cached.

The degree of data duplication can vary dramatically in
different systems and application environments. DDE is a
technique that is suitable for those environments with ex-
pected high degrees of data duplication such as backup of
multiple personal workstations, and it is not necessarily in-
tended for general uses.

The key techniques used in DDE are content-based hash-
ing, copy-on-write, and lazy updates. With necessary and
appropriate supports, these techniques thus DDE could be
also applicable to other file systems besides Storage Tank.
Particularly, lazy updates minimize the performance impact
of identifying duplicate data and maintaining block meta-
data, which will also be beneficial to other file systems.

8 Future Work

We are working on implementing duplicate data elimi-
nation in Storage Tank. Besides implementation, there are
several research directions we can explore in the future.

The technique of copy-on-write plays a key role in our
design to guarantee consistency between fingerprints and
block contents. However, it forces a client to request new
block allocations for each file modification and has notice-
able overheads on normal write operations. To alleviate the
extra allocation cost due to COW, the server could preal-
locate new blocks to a client that acquires an exclusive or
shared-write lock. Therefore, the preallocation policy for
COW is an interesting research topic. Another promising
approach to alleviate this overhead is to allow a client to
maintain a small private storage pool on behalf of the server.
Therefore, there is almost no extra cost for COW.

In our current design, we employ quite a naive coalesc-
ing policy: when we find a recently-written block contain-
ing the same data as a block in the fingerprint table, we sim-
ply dereference the new block and change the correspond-
ing file block pointer to the primary block in the fingerprint
table. This policy is suboptimal in terms of efficiency. Al-
though we have considered file and block access patterns
in our design, we do not, for simplicity, explicitly elaborate
policies that favor sequential fingerprint probing and match-
ing under certain block access patterns. Therefore, further
research on such policies is needed.

The naive coalescing policy we describe in this paper
may also result in file fragmentation. Coalescing few blocks
within a large file is less desirable. Therefore, a study
on policies for minimizing file fragmentation is interesting.
Furthermore, a good coalescing policy could reduce storage
fragmentation by reusing the lingering unused blocks due to
lazy free space reclamation.

The fingerprint of a block is a short version of its data. A
client can easily keep a history of its recent write activities
by maintaining a fingerprint cache. The client can do part of
the duplicate data elimination work in conjunction with the
server. More beneficially, actual write operations to storage
can be saved if there are cache hits.

As far as we know, there are no extensive and intensive
studies on the duplicate data distributions of the block level
or other levels. A better understanding of data duplicationin
file systems can be enormously beneficial for making good
duplicate data coalescing policies.

In our design, we add two attributes on physical disk
blocks: the reference count and the SHA-1 fingerprint of
the block content. We also provide appropriate data struc-
tures to store and retrieve these attributes. Our work makes
it feasible to check data integrity in Storage Tank. A client
can ensure that the data it reads is the data it writes by com-
paring the fingerprint on the server with the one calculated
from the data it recently reads.
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9 Conclusions

Although disk prices drop dramatically, storage is still a
precious resource in computer systems. For some data sets,
reducing storage consumption caused by duplicate data can
significantly improve storage usage efficiency. By using
techniques of content-based hashing, copy-on-write, lazy
lock revocation, and lazy free space reclamation, we can
detect and coalesce duplicate data blocks in on-line file sys-
tems without a significant impact on system performance.
Our case studies show that 20–79% of storage can be saved
by the technique of duplicate data elimination at 1 KB
blocks in some application environments. File-level dupli-
cation detection is sensitive to changes of file contents and
can lose up to 50–70% of the chance of finding duplicate
data at finer granularities.
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