
 1

Identifying Stable File Access Patterns

Purvi Shah Jehan-François Pâris1 Ahmed Amer2 Darrell D. E. Long 3
University of Houston University of Houston University of Pittsburgh U. C. Santa Cruz

purvi@cs.uh.edu paris@cs.uh.edu amer@cs.pitt.edu darrell@cs.ucsc.edu

1. Introduction

Disk access times have not kept pace with the evolution
of disk capacities, CPU speeds and main memory sizes.
They have only improved by a factor of 3 to 4 in the last
25 years whereas other system components have almost
doubled their performance every other year. As a result,
disk latency has an increasingly negative impact on the
overall performance of many computer applications.123

Two main techniques can be used to mitigate this
problem, namely caching and prefetching. Caching
keeps in memory the data that are the most likely to be
used again while prefetching attempts to bring data in
memory before they are needed. Both techniques are
widely implemented at the data block level. More recent
work has focused on caching and prefetching entire files.

There are two ways to implement file prefetching.
Predictive prefetching attempts to predict which files are
likely to be accessed next in order to read them before
they are needed. While being conceptually simple, the
approach has two important shortcomings. First, the
prefetching workload will get in the way of the regular
disk workload. Second, it is difficult to predict file
accesses sufficiently ahead of time to ensure that the
predicted files can be brought into main memory before
they are needed.

A more promising alternative is to group together on
the disk drive files that are often accessed at the same
time [3]. This technique is known as implicit
prefetching and suffers none of the shortcomings of
predictive prefetching because each cluster of files can
now be brought into main memory in a single I/O opera-
tion. The sole drawback of this new approach is the
need to identify stable file access patterns in order to
build long-lived clusters of related files.

We present here a new file predictor that identifies
stable access patterns and can predict between 50 and 70
percent of next file accesses over a period of one year.
Our First Stable Successor keeps track of the successor
of each individual file. Once it has detected m succes-
sive accesses to file Y, each immediately following an

1 Supported in part by the National Science Foundation under grant
CCR-9988390.
2 Supported in part by the National Science Foundation under grant
ANI-0325353.
3 Supported in part by the National Science Foundation under grant
CCR-0204358.

access to file X, it predicts that file Y will always be the
successor of file X and never alters this prediction.

The remainder of this paper is organized as follows.
Section 2 reviews previous work on file access predic-
tion. Section 3 introduces our First Stable Successor
predictor and Section 4 discusses its performance.
Finally, Section 5 states our conclusions

2. Previous Work

Palmer et al. [8] used an associative memory to recog-
nize access patterns within a context over time. Their
predictive cache, named Fido, learns file access patterns
within isolated access contexts. Griffioen and Appleton
presented in 1994 a file prefetching scheme relying on
graph-based relationships [4]. Shriver et al. [10]
proposed an analytical performance model to study the
effects of prefetching for file system reads.

Tait and Duchamp [11] investigated a client-side
cache management technique used for detecting file
access patterns and for exploiting them to prefetch files
from servers. Lei and Duchamp [6] later extended this
approach and introduced the Last Successor predictor.
More recent work by Kroeger and Long introduced more
effective schemes based on context modeling and data
compression [5].

Two much simpler predictors, Stable Successor (or
Noah) [1] and Recent Popularity [2], have been recently
proposed. The Stable Successor predictor is a
refinement of the Last Successor predictor that attempts
to filter out noise in the observed file reference stream.
Stable Successor keeps track of the last observed suc-
cessor of every file, but it does not update its past
prediction of the successor of file X before having
observed m successive instances of file Y immediately
following instances of file X. Hence, given the
sequence:

S: ABABABACABACABADADADA
Stable Successor with m = 3 will first predict that B is
the successor of A and will not update its prediction until
it encounters three consecutive instances of file D
immediately following instances of file A.

The Recent Popularity or k-out-of-n predictor
maintains the n most recently observed successors of
each file. When attempting to make a prediction for a
given file, Recent Popularity searches for the most

 2

popular successor from the list. If the most popular suc-
cessor occurs at least k times then it is submitted as a
prediction. When more than one file satisfies the
criterion, recency is used as the tiebreaker.

3. The First Stable Successor Predictor

All the predictors are dynamic in the sense that they
reflect changes in file access patterns and modify
accordingly their predictions. The sole existing static
predictor is First Successor [1], which always predicts
the first encountered successor of file X as its successor.
It is a rather crude predictor and was found to perform
much worse than all Last Successor, Stable Successor or
Recent Popularity.

There are two explanations for this poor performance.
First, First Successor cannot reflect changes in file
access patterns. Second, it bases all its predictions on a
single observation.

As shown on Figure 1, the First Stable Successor
(FSS) predictor remedies this second limitation by
requiring m successive instances of file Y immediately
following instances of file X before predicting that file Y
is the successor of file X. Otherwise it makes no
prediction. When m = 1, the FSS predictor becomes
identical to the First Successor protocol and predicts that
that file Y is the successor of file X once it has encoun-
tered a single access to file Y immediately following an
access to file X.

A large value of m will result into fewer predictions
than a smaller value of m but will also increase the
likelihood that these predictions will be correct. This
provides us with a relatively easy way to tune the proto-
col by either increasing m whenever we want to reduce
the number of false predictions or decreasing it when-
ever we want to increase the total number of predictions.

4. Performance Evaluation

When comparing the effectiveness of file predictors, one
is often confronted with two primary metrics, success-
per-reference and success-per-prediction. Given the
dependent nature of these metrics, it is impossible to use
either of them alone when assessing the performance of
any given predictor. For example, a predictor that has a
99% success-per-prediction rate would be considered
impractical if it could only be used on 5% of the refer-
ences. Conversely, predictors that have a high success-
per-reference rate may also give rise to a high number of
incorrect predictions that may tax the file system to the
extent that it outweighs any improvements due to
predictive prefetching.

We will use a third metric integrating both aspects of
the predictor performance. Consider first the two possi-
ble outcomes of an incorrect prediction. If we assume
no preemption, the next file access will have to wait
while the predicted file is loaded into the cache. The

Assumptions:
G is file being currently accessed
F its direct predecessor
FirstStableSuccessor(F) is last prediction made for
the successor of F
LastSuccessor(F) is last observed successor of F
Count(F) is a counter
m is minimum number of consecutive identical
successors to declare a First Stable Sucessor

Algorithm:
if FirstStableSuccessor(F) is undefined then
 if LastSuccessor(F) = G then
 Counter(F) ← Counter(F) + 1
 else
 Counter(F) ← 1
 end if
 if Counter(F) = m then
 FirstStableSuccessor(F) ←G
 end if
end if

Figure 1 The First Stable Successor Predictor

cost of the incorrect prediction is thus one additional
cache miss. Allowing preemption would reduce this
delay and decrease the penalty. Note that the incorrect
prediction will have no other adverse effect on the cache
performance as long as the cache replacement policy
expels first the files that were never accessed.

We define the effective success rate per reference of
a predictor as the ratio:

ref

incorrcorr

N
NN −

where corrN is the number of correct predictions, incorrN
the number of incorrect predictions and refN the number
of references and the α factor represents the impact of
file fetch preemption on the performance of the predic-
tor. A zero value for α corresponds to the situation
where incorrect predictions incur no cost because all
predicted file fetches can be preempted when found to
be incorrect without any further delay. A unit value
assumes that there is no fetch preemption, and all ongo-
ing fetches must be completed, whether correctly
predicted or not. An intermediate α value corresponds
to situations where preemption is possible, but at some
cost less than the cost of a file fetch. Computing the
effective success rate per reference for α values of, say,
0.0, 0.5 and 1.0 will permit us to compare predictors for
a realistic range of file-system implementations.
We evaluated the performance of our FSS predictor by
simulating its operation on two sets of file traces. The
first set consisted of four file traces collected using
Carnegie Mellon University’s DFSTrace system [7].
The traces include mozart, a personal workstation, ives,
a system with the largest number of users, dvorak, a
system with the largest proportion of write activity,

 3

α=0α=0α=0α=0

-20

0

20

40

60

80

0 2 4 6 8 10 12 14 16 18 20

Number of Consecutive Successors

Ef
fe

ct
iv

e
Su

cc
es

s
Ra

te
 (%

)

Barber
Dvorak
Ives
Mozart
Instruct
Research
Web

Figure 2. Effective success rate per reference of the FSS predictor for αααα = 0 and m varying between 1 and 20.

α=0.5α=0.5α=0.5α=0.5

-40

-20

0

20

40

60

80

0 2 4 6 8 10 12 14 16 18 20

Number of Consecutive Successors

Ef
fe

ct
iv

e
Su

cc
es

s
Ra

te
 (%

)

Barber
Dvorak
Ives
Mozart
Instruct
Research
Web

Figure 3. Effective success rate per reference of the FSS predictor for αααα = 0.5 and m varying between 1 and 20.

α=1α=1α=1α=1

-80

-60

-40

-20

0

20

40

60

80

0 2 4 6 8 10 12 14 16 18 20

Number of Consecutive Successors

Ef
fe

ct
iv

e
Su

cc
es

s
Ra

te
 (%

)

Barber
Dvorak
Ives
Mozart
Instruct
Research
Web

Figure 4. Effective success rate per reference of the FSS predictor for αααα = 1 and m varying between 1 and 20.

 4

and barber, a server with the highest number of system
calls per second. They include between four and five
million file accesses collected over a time span of
approximately one year. Our second set of traces was
collected in 1997 by Roselli [9] at the University of
California, Berkeley over a period of approximately
three months. To eliminate any interleaving issues,
these traces were processed to extract the workloads of
an instructional machine (instruct), a research machine
(research) and a web server (web).

Figures 2 to 4 represent the effective success rates per
reference achieved by our First Stable Successor when
the number m of consecutive successors triggering the
predictor varies between 1 and 20. Negative success
rates correspond to situations where α > 0 and the sum
of the penalties assessed for incorrect predictions
exceeds the number of correct predictions.

As we can see, our First Stable Successor performs
much better with the four CMU traces than with the
three Berkeley traces even though the Berkeley traces
were collected over a much shorter period. In particular,
our predictor performs very poorly with the instruct
trace, which appears to have the least stable reference
patterns of all seven traces.

The four CMU traces can be further subdivided into
two groups. The first group comprises barber and
mozart, which exhibit rather stable behaviors. As a
result, our predictor can successfully predict between 66
and 69 percent of future references. Conversely, dvorak
and ives exhibit less stable behaviors and our predictor
can successfully predict between 53 and 57 percent of
future references. This should not surprise us because
ives had the largest number of users and dvorak the larg-
est proportion of write activity. Even when we do not
penalize incorrect predictions, First Stable Successor
requires less consecutive successors to reach their opti-
mum performance on barber and mozart than on dvorak
and ives.

We can also observe that the number of consecutive
successors required to achieve optimum performance
increases on all seven traces when α increases from zero
to one. It might be therefore indicated to increase the
value of the m parameter for workloads that exhibit less
stable file access patterns in order to reduce the number
of misses.

Figures 5 to 7 compare the effective success rates per
reference achieved by our First Stable Successor with
m = 8 with those achieved by First Successor, Last Suc-
cessor, Stable Successor with m = 2, and k-out-of-m. As
we can see, our First Stable Successor predictor
performs much better than First Successor but not as
well as Last Successor, Stable Successor and k-out-of-m.
This gap is especially evident for the instruct trace as
these last three predictors perform almost as well as with
the mozart trace while First Successor and First Stable
Successor perform very poorly.

We can draw two major conclusions from our meas-
urements. First, there are enough stable access patterns

in the six of the seven traces we analyzed to make
implicit file prefetching a worthwhile proposition. This
is especially true because of the low overhead of the
approach, which means that wrong predictions would
only incur a minimal penalty (α << 1). Second, many, if
not most, of these stable access patterns are long lived
and appear to persist over at least a full year. A file
system implementing implicit file prefetching would
probably reevaluate its file groups once a week. We can
already predict that these weekly group reevaluations
will not result in a complete reconfiguration of the whole
file system.

5. Conclusions

Identifying and exploiting stable file access patterns is
essential to the success of implicit file prefetching as this
technique builds long-lived clusters of related files that
can be brought into memory in a single I/O operation.

We have presented a new file access predictor that
was specifically tailored to identify such stable file
access patterns. Trace-driven simulation results indicate
that our First Stable Successor can predict up to 70
percent of next file accesses over a period of one year.

References

[1] A. Amer and D. D. E. Long, Noah: Low-cost file access
prediction through pairs, in Proc. 20th Int’l Performance,
Computing, and Communications Conf., pp. 27–33, Apr. 2001.

[2] A. Amer, D. D. E. Long, J.-F. Pâris, and R. C. Burns, File
access prediction with adjustable accuracy, in Proc. 21st Int’l
Performance of Computers and Communication Conf., pp. 131–
140, Apr. 2002.

[3] A. Amer, D. Long, and R. Burns. Group-based management of
distributed file caches, in Proc. 17th Int’l Conf. on Distributed
Computing Systems, pp. 525–534, July 2002.

[4] J. Griffioen and R. Appleton, Reducing file system latency
using a predictive approach, in Proc. 1994 Summer USENIX
Conf., pp. 197–207, June 1994.

[5] T. M. Kroeger and D. D. E. Long, Design and implementation
of a predictive file prefetching algorithm, in Proc. 2001
USENIX Annual Technical Conf., pp. 105–118, June 2001.

[6] H. Lei and D. Duchamp, An analytical approach to file
prefetching, in Proc. 1997 USENIX Annual Technical Conf., pp.
305-318, Jan. 1997.

[7] L. Mummert and M. Satyanarayanan, Long term distributed file
reference tracing: implementation and experience, Technical
Report, School of Computer Science, Carnegie Mellon
University, 1994.

[8] M. L. Palmer and S. B. Zdonik, FIDO: a cache that learns to
fetch, in Proc. 17th Int’l Conf. on Very Large Data Bases, pp.
255–264, Sept. 1991.

[9] D. Roselli, Characteristics of file system workloads, Technical.
Report CSD-98-1029, University of California, Berkeley, 1998.

[10] E. Shriver, C. Small, and K. A. Smith, Why does file system
prefetching work? in Proc. 1999 USENIX Technical Conf., pp.
71–83, June 1999.

[11] C. Tait and D. Duchamp, Detection and exploitation of file
working sets, in Proc. 11th Int’l Conf. on Distributed Computing
Systems, pp. 2–9, May 1991.

 5

αααα = 0

-20

0

20

40

60

80

100

Barber Dvorak Ives Mozart Instruct Research Web

File System Trace

Ef
fe

ct
iv

e
Su

cc
es

s
Ra

te
 p

er
 R

ef
. (

%
)

First Successor
Last Successor
Stable Successor
2-Out-Of-4
First Stable Succesor

Figure 5. Compared success rates per reference of the five policies for αααα = 0.

αααα = 0.5

-40

-20

0

20

40

60

80

Barber Dvorak Ives Mozart Instruct Research Web

File System Trace

Ef
fe

ct
iv

e
Su

cc
es

s
Ra

te
 p

er
 R

ef
. (

%
)

First Successor
Last Successor
Stable Successor
3-Out-Of-4
First Stable Succesor

Figure 6. Compared success rates per reference of the five policies for αααα = 0.5.

αααα = 1

-60

-40

-20

0

20

40

60

80

Barber Dvorak Ives Mozart Instruct Research Web

File System Trace

Ef
fe

ct
iv

e
Su

cc
es

s
Ra

te
 p

er
 R

ef
. (

%
)

First Successor
Last Successor
Stable Successor
4-Out-Of-4
First Stable Succesor

Figure 7. Compared success rates per reference of the five policies for αααα = 1.

