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1. Introduction 

Disk access times have not kept pace with the evolution 
of disk capacities, CPU speeds and main memory sizes.  
They have only improved by a factor of 3 to 4 in the last 
25 years whereas other system components have almost 
doubled their performance every other year. As a result, 
disk latency has an increasingly negative impact on the 
overall performance of many computer applications.123 

Two main techniques can be used to mitigate this 
problem, namely caching and prefetching.  Caching 
keeps in memory the data that are the most likely to be 
used again while prefetching attempts to bring data in 
memory before they are needed.  Both techniques are 
widely implemented at the data block level.  More recent 
work has focused on caching and prefetching entire files.  

There are two ways to implement file prefetching.  
Predictive prefetching attempts to predict which files are 
likely to be accessed next in order to read them before 
they are needed.  While being conceptually simple, the 
approach has two important shortcomings.  First, the 
prefetching workload will get in the way of the regular 
disk workload.  Second, it is difficult to predict file 
accesses sufficiently ahead of time to ensure that the 
predicted files can be brought into main memory before 
they are needed. 

A more promising alternative is to group together on 
the disk drive files that are often accessed at the same 
time [3].  This technique is known as implicit 
prefetching and suffers none of the shortcomings of 
predictive prefetching because each cluster of files can 
now be brought into main memory in a single I/O opera-
tion.  The sole drawback of this new approach is the 
need to identify stable file access patterns in order to 
build long-lived clusters of related files. 

We present here a new file predictor that identifies 
stable access patterns and can predict between 50 and 70 
percent of next file accesses over a period of one year.  
Our First Stable Successor keeps track of the successor 
of each individual file.  Once it has detected m succes-
sive accesses to file Y, each immediately following an 
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access to file X, it predicts that file Y will always be the 
successor of file X and never alters this prediction. 

The remainder of this paper is organized as follows.  
Section 2 reviews previous work on file access predic-
tion.  Section 3 introduces our First Stable Successor 
predictor and Section 4 discusses its performance.  
Finally, Section 5 states our conclusions 

2. Previous Work 

Palmer et al. [8] used an associative memory to recog-
nize access patterns within a context over time.  Their 
predictive cache, named Fido, learns file access patterns 
within isolated access contexts.  Griffioen and Appleton 
presented in 1994 a file prefetching scheme relying on 
graph-based relationships [4].  Shriver et al. [10] 
proposed an analytical performance model to study the 
effects of prefetching for file system reads.  

Tait and Duchamp [11] investigated a client-side 
cache management technique used for detecting file 
access patterns and for exploiting them to prefetch files 
from servers.  Lei and Duchamp [6] later extended this 
approach and introduced the Last Successor predictor.  
More recent work by Kroeger and Long introduced more 
effective schemes based on context modeling and data 
compression [5]. 

Two much simpler predictors, Stable Successor (or 
Noah) [1] and Recent Popularity [2], have been recently 
proposed.  The Stable Successor predictor is a 
refinement of the Last Successor predictor that attempts 
to filter out noise in the observed file reference stream.  
Stable Successor keeps track of the last observed suc-
cessor of every file, but it does not update its past 
prediction of the successor of file X before having 
observed m successive instances of file Y immediately 
following instances of file X.  Hence, given the 
sequence: 

S: ABABABACABACABADADADA 
Stable Successor with m = 3 will first predict that B is 
the successor of A and will not update its prediction until 
it encounters three consecutive instances of file D 
immediately following instances of file A. 

The Recent Popularity or k-out-of-n predictor 
maintains the n most recently observed successors of 
each file.  When attempting to make a prediction for a 
given file, Recent Popularity searches for the most 
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popular successor from the list.  If the most popular suc-
cessor occurs at least k times then it is submitted as a 
prediction.  When more than one file satisfies the 
criterion, recency is used as the tiebreaker. 

3. The First Stable Successor Predictor 

All the predictors are dynamic in the sense that they 
reflect changes in file access patterns and modify 
accordingly their predictions.  The sole existing static 
predictor is First Successor [1], which always predicts 
the first encountered successor of file X as its successor.  
It is a rather crude predictor and was found to perform 
much worse than all Last Successor, Stable Successor or 
Recent Popularity. 

There are two explanations for this poor performance.  
First, First Successor cannot reflect changes in file 
access patterns.  Second, it bases all its predictions on a 
single observation. 

As shown on Figure 1, the First Stable Successor 
(FSS) predictor remedies this second limitation by 
requiring m successive instances of file Y immediately 
following instances of file X before predicting that file Y 
is the successor of file X.  Otherwise it makes no 
prediction.  When m = 1, the FSS predictor becomes 
identical to the First Successor protocol and predicts that 
that file Y is the successor of file X once it has encoun-
tered a single access to file Y immediately following an 
access to file X. 

A large value of m will result into fewer predictions 
than a smaller value of m but will also increase the 
likelihood that these predictions will be correct.  This 
provides us with a relatively easy way to tune the proto-
col by either increasing m whenever we want to reduce 
the number of false predictions or decreasing it when-
ever we want to increase the total number of predictions. 

4. Performance Evaluation 

When comparing the effectiveness of file predictors, one 
is often confronted with two primary metrics, success-
per-reference and success-per-prediction.  Given the 
dependent nature of these metrics, it is impossible to use 
either of them alone when assessing the performance of 
any given predictor.  For example, a predictor that has a 
99% success-per-prediction rate would be considered 
impractical if it could only be used on 5% of the refer-
ences.  Conversely, predictors that have a high success-
per-reference rate may also give rise to a high number of 
incorrect predictions that may tax the file system to the 
extent that it outweighs any improvements due to 
predictive prefetching.   

We will use a third metric integrating both aspects of 
the predictor performance.  Consider first the two possi-
ble outcomes of an incorrect prediction.  If we assume 
no preemption, the next file access will have to wait 
while the predicted file is loaded into the cache.  The 
 

Assumptions: 
G is file being currently accessed 
F its direct predecessor 
FirstStableSuccessor(F) is last prediction made for 
the successor of F 
LastSuccessor(F) is last observed successor of F 
Count(F) is a counter 
m is minimum number of consecutive identical 
successors to declare a First Stable Sucessor 

Algorithm: 
if FirstStableSuccessor(F) is undefined then 
 if LastSuccessor(F) = G then 
  Counter(F) ← Counter(F) + 1 
 else 
  Counter(F) ← 1 
 end if 
 if Counter(F) = m  then 
  FirstStableSuccessor(F) ←G 
 end if 
end if 

Figure 1 The First Stable Successor Predictor 

cost of the incorrect prediction is thus one additional 
cache miss.  Allowing preemption would reduce this 
delay and decrease the penalty.  Note that the incorrect 
prediction will have no other adverse effect on the cache 
performance as long as the cache replacement policy 
expels first the files that were never accessed. 

We define the effective success rate per reference of 
a predictor as the ratio: 

ref

incorrcorr

N
NN −  

where corrN  is the number of correct predictions, incorrN  
the number of incorrect predictions and refN  the number 
of references and the α factor represents the impact of 
file fetch preemption on the performance of the predic-
tor.  A zero value for α corresponds to the situation 
where incorrect predictions incur no cost because all 
predicted file fetches can be preempted when found to 
be incorrect without any further delay.  A unit value 
assumes that there is no fetch preemption, and all ongo-
ing fetches must be completed, whether correctly 
predicted or not.  An intermediate α value corresponds 
to situations where preemption is possible, but at some 
cost less than the cost of a file fetch.  Computing the 
effective success rate per reference for α values of, say, 
0.0, 0.5 and 1.0 will permit us to compare predictors for 
a realistic range of file-system implementations. 
We evaluated the performance of our FSS predictor by 
simulating its operation on two sets of file traces.  The 
first set consisted of four file traces collected using 
Carnegie Mellon University’s DFSTrace system [7].  
The traces include mozart, a personal workstation, ives, 
a system with the largest number of users, dvorak, a 
system with the largest proportion of write activity, 
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Figure 2.  Effective success rate per reference of the FSS predictor for αααα = 0 and m varying between 1 and 20. 
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Figure 3.  Effective success rate per reference of the FSS predictor for αααα = 0.5 and m varying between 1 and 20. 
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Figure 4.  Effective success rate per reference of the FSS predictor for αααα = 1 and m varying between 1 and 20. 
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and barber, a server with the highest number of system 
calls per second.  They include between four and five 
million file accesses collected over a time span of 
approximately one year.  Our second set of traces was 
collected in 1997 by Roselli [9] at the University of 
California, Berkeley over a period of approximately 
three months.  To eliminate any interleaving issues, 
these traces were processed to extract the workloads of 
an instructional machine (instruct), a research machine 
(research) and a web server (web). 

Figures 2 to 4 represent the effective success rates per 
reference achieved by our First Stable Successor when 
the number m of consecutive successors triggering the 
predictor varies between 1 and 20.  Negative success 
rates correspond to situations where α > 0 and the sum 
of the penalties assessed for incorrect predictions 
exceeds the number of correct predictions. 

As we can see, our First Stable Successor performs 
much better with the four CMU traces than with the 
three Berkeley traces even though the Berkeley traces 
were collected over a much shorter period.  In particular, 
our predictor performs very poorly with the instruct 
trace, which appears to have the least stable reference 
patterns of all seven traces.   

The four CMU traces can be further subdivided into 
two groups. The first group comprises barber and 
mozart, which exhibit rather stable behaviors.  As a 
result, our predictor can successfully predict between 66 
and 69 percent of future references.  Conversely, dvorak 
and ives exhibit less stable behaviors and our predictor 
can successfully predict between 53 and 57 percent of 
future references.  This should not surprise us because 
ives had the largest number of users and dvorak the larg-
est proportion of write activity.  Even when we do not 
penalize incorrect predictions, First Stable Successor 
requires less consecutive successors to reach their opti-
mum performance on barber and mozart than on dvorak 
and ives. 

We can also observe that the number of consecutive 
successors required to achieve optimum performance 
increases on all seven traces when α increases from zero 
to one.  It might be therefore indicated to increase the 
value of the m parameter for workloads that exhibit less 
stable file access patterns in order to reduce the number 
of misses. 

Figures 5 to 7 compare the effective success rates per 
reference achieved by our First Stable Successor with 
m = 8 with those achieved by First Successor, Last Suc-
cessor, Stable Successor with m = 2, and k-out-of-m.  As 
we can see, our First Stable Successor predictor 
performs much better than First Successor but not as 
well as Last Successor, Stable Successor and k-out-of-m.  
This gap is especially evident for the instruct trace as 
these last three predictors perform almost as well as with 
the mozart trace while First Successor and First Stable 
Successor perform very poorly. 

We can draw two major conclusions from our meas-
urements.  First, there are enough stable access patterns 

in the six of the seven traces we analyzed to make 
implicit file prefetching a worthwhile proposition.  This 
is especially true because of the low overhead of the 
approach, which means that wrong predictions would 
only incur a minimal penalty (α << 1).  Second, many, if 
not most, of these stable access patterns are long lived 
and appear to persist over at least a full year.  A file 
system implementing implicit file prefetching would 
probably reevaluate its file groups once a week.  We can 
already predict that these weekly group reevaluations 
will not result in a complete reconfiguration of the whole 
file system. 

5. Conclusions 

Identifying and exploiting stable file access patterns is 
essential to the success of implicit file prefetching as this 
technique builds long-lived clusters of related files that 
can be brought into memory in a single I/O operation. 

We have presented a new file access predictor that 
was specifically tailored to identify such stable file 
access patterns.  Trace-driven simulation results indicate 
that our First Stable Successor can predict up to 70 
percent of next file accesses over a period of one year.   
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Figure 5.  Compared success rates per reference of the five policies for αααα = 0. 
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Figure 6.  Compared success rates per reference of the five policies for αααα = 0.5. 
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Figure 7.  Compared success rates per reference of the five policies for αααα = 1. 


