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Abstract 

Modeling the reliability of distributed systems requires 
a good understanding of the reliability of the components. 
Careful modeling allows highly fault-tolerant distributed 
applications to be constructed at the least cost. Realis- 
tic estimates can be found by measuring the performance 
of actual systems. An enormous amount of information 
about system performance can be acquired with no special 
privileges via the Internet. 

A distributed monitoring tool called a tattler is de- 
scribed. The system is composed of a group of tattler 
processes that monitor a set of selected hosts. The tat- 
tlers cooperate to provide a fault-tolerant distributed data 
base of information about the hosts they monitor. They 
use weak-consistency replication techniques to ensure their 
own fault-tolerance and the eventual consistency of the data 
base that they maintain. 

1 Introduction 

Distributed systems are now pervasive. Few system 
architects would consider designing a system that could 
not interact with other systems. Soon it will be rare to 
find computers that are not connected by a network. With 
distribution comes an increased incidence of partial failure. 
Replication of both control and dah can be employed to 
provide systems capable of tolerating partial failures. 

To use replication techniques most effectively, it is im- 
portant to understand the nature of the failures to be masked. 
Recent studies include analyses of Mdem systems [l, 21 
and the IBM/XA system [3]. Research covering heteroge- 
neous systems is less common. Very few such studies have 
appeared in the open literature, although it is certain that 
most companies perform reliability studies of their products 
intemally. 

An earlier study [4] that used the Internet to estimate sev- 
eral parameters, including mean-time-to-failure (M'ITF) 
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and availability. These estimates were then used to derive 
an estimate of mean-time-to-repair (MTr'R). While this 
study provided many important results, it suffered from 
several weaknesses. First, the assumptions made about 
the distributions that described host failures may not re- 
flect those found in actual systems. Second, the network 
that connected the polling host (pollster) to the polled hosts 
(respondents) can affect the statistics by reporting false fail- 
ures. As aresult, theestimates of the parameters may differ 
significantly from the actual values. In particular, the de- 
rived estimate of mean-time-to-repair can be much larger 
than expected since small errors in the availability estimate 
that are introduced by the intervening network can have a 
significant effect. 

Estimates of mean-time-to-failure were based on re- 
ported up-times and not the actual time of failure. This 
was the best information available since a host is not in a 
position to give its failure time as it goes down. As a result, 
there was a bias towards more reliable hosts which means 
that the estimate of M?TF is larger than the true value. 

Similarly, availability was estimated by the fraction of 
hosts that were reachable by the pollster. To ensure that 
only hosts capable of answering were queried, an initial 
poll was made and only hosts that answered this poll were 
counted in the availability census. Unfortunately, there are 
a significant number of network segments separating the 
pollster from most respondents and so a network failure 
may be misinterpreted as a host failure. 

The most direct way of determining statistics such as 
MTTF and availability is through direct measurement. A 
fault-tolerant monitor is being developed that can be placed 
at strategic locations around the Internet. Instances of the 
monitor will be placed to minimize the amount of shared 
network so that a failure of a router or a link will be unlikely 
to disable more than one monitor. They replicate their 
statistics so that even the permanent failure of one monitor 
will not cause a significant loss of information. 

These monitors are called tattlers since they periodically 
inquire about other hosts and then tattle to each other about 
what they learn. The distributeddata base is managed using 
an epidemic replication protocol [5,6,7]. Such protocols 
provide weak consistency guarantees, which are sufficient 
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for statistical purposes. Given the frequency of polls and 
the potentidy large number of tattlers, a pessimistic repli- 
cation protocol is impractical. 

2 'IBttlers 

For the sake of c o n c m c y  and modularity each tattler 
is composed of several parts: a client interface, a polling 
daemon, a data base daemon, and a tattler daemon. 

The polling daemon produces sample observations. It 
takes samples at a specified rate, and can be requested to 
start or stop sampling using the client interface. The data 
base daemon provides stable storage for sample observa- 
tions (from the polling daemon), and m e t a d  from the 
client interface and the tattler daemon. The tattler daemon 
is responsible for group membership (adding and delet- 
ing tattlers) and managing the Consistency of thereplicated 
data base through anti-entropy sessions. The structure of a 
tattler is depictedin figure 1. 

Other Tattler Daemons 
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Figure 1: Structure of a "la. 

There are several advantages to replicating the tattlers 
around the network. First, it provides a fault-tolmt 
method for monitoring hosts. All but one of the tattlers 
can fail and the set of hosts can s t i l l  be monitored (albeit 
in a degraded mode). It also provides a way of mitigating 
the effect of transient network failures. When monitoring 
hosts from a single point, the failure of one router can pre- 
vent any host from being polled. When several relatively 

independent polling daemons work together, it will be very 
unlikely that a total failure can occur. Second, instead of 
estimating parameters such as MT"F based on a large sam- 
ple with an unknown distribution, the tattlers will be able 
to record the actual events (with an epsilon error). Since 
the quantities are being directly measured, questions such 
as the governing distribution are less important. Third, 
because the tattlers are distributed they can perform many 
more queries than a single polling program. While a single 
polling program would create roughly the same message 
traffic, it would be vulnerable to failure. It would also take 
significantly longer to complete its task since there would 
be no parallelism and it would have to poll for a longer 
period to make up for the data lost due to failures. 

Collectively the tattlers are responsible for maintaining a 
list of hosts to monitor, and collecting statistics on them. A 
record of the form (host, poll method, poll interval) is kept 
for each host. The client interface allows hosts to be added 
or deleted from this list. The recorded statistics are stored 
in logs. These logs can take any form, but are initially se 
quences of tuples of the form (host, boot time, sample time). 

The tattler daemon communicates this information to 
other tattlers, using weak-consistency group communica- 
tion protocols. These protocols ensure that the logs and 
host list are eventually consistent [8] (see 53 for details). 
To accomplish this, each tattler daemon periodically con- 
tacts another tattler and the two exchange their log and host 
files in anti-entropy sessions. Both then merge the informa- 
tion to obtain a log with better coverage of the monitored 
hosts. 

The group communication protocols require the tattlers 
to know the identity of the other tattlers. This is done 
using a weakansistency membership protocol [9]. This 
protocol requires that a new tattler join the group of tattlers 
by obtaining one or more sponsors. A tattler can leave the 
group by following a two-phase protocol: it first declares 
its intent to leave. It can destroy state information once it 
knows that aII other tattlers have observed its declaration 
of intent. The client interface provides a mechanism to 
request tattlers to shut down. 

The tattler's state - logs, host list and group information 
- are written to secondary storage by the data base daemon 
to simulate a fault-tolerant process. When a host on which 
the tattler runs fails and recovers, the tattler returns with 
a slight case of amnesia It will remember statistics about 
events that were written to secondary store, but it wil l  not 
know about m m  recent events that occurred while it was 
down. The group communication protocols ensure that it 
wil l  eventually receive any missing information. 

At the heart of the tattler are several event queues. All 
the events the tattler must perform in the future are recorded 
in these queues, including initiating anti-entropy sessions 
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and polling hosts to obtain measurements. By breaking the 
tattlers up into several processes, several activities can take 
place concurrently. Since the time when an event occurs 
can be important, serializing the events in a single program 
could compromise the statistical data. 

The polling daemon periodically polls hosts using the 
polling method given in the list of hosts. This method is 
not coded into the polling daemon; instead, it is provided 
as separate programs to be executed by the polling daemon. 
This also allows the tattler to go on with its business instead 
of waiting for the poll to complete. Polling can be done 
at any selected interval, though in the initial configuration 
it polls at exponentially-distributed random intervals (with 
a given mean) both for statistical purposes and to prevent 
synchronous behavior where multiple tattlers poll the same 
host at once. 

The polling method program is determined from the 
poll method field in the host list. The system will provide 
methods that use such protocols as Sun RPC and ICMp echo. 
By separating the polling method from the tattler daemon, 
new methods can be added with relative ease. 

Each polling method will require a corresponding merge 
method, to be used when other logs are merged with the lo- 
cal log. This is necessary because each polling method may 
record different information with its own unique semantics. 
The tattler daemon is unconcerned with the semantics of 
the data that it gathers. 

A client interface is provided to manipulate the tattlers. 
It allows hosts to be added and deleted from the monitor- 
ing list, and allows a user to suspend monitoring of certain 
hosts. It can inform a tattler that it should shut down and 
leave the process group. Similarly, new tattlers can be 
added easily. It is sufficient to contact a single tattler to 
perform all of these operations. In fact, the client interface 
need only contact the closest tattler, and the group commu- 
nication protocols ensure that the operation will eventually 
be known by all tattlers. 

3 Weak Consistency Replication 

The tattler uses new weak-consistency replication and 
group membership protocols developed by members of our 
research group. The tattler, like many distributed appli- 
cations can be written as a group of processes that com- 
municate through a group communication protocol. This 
protocol ensures that the group member processes have a 
consistent view of the service they are to provide, by stip- 
ulating the way that messages are sent between processes. 
The group communication protocol generally provides a 
multicast service that sends a message from one process to 
all other processes in the group. 

In general, two processes are consistent at time t if 
they have received the same set of messages. Various 
degrees of consistency place different constraints on the 
orders in which the messages can be delivered. In general, 
the stronger the consistency requirements, the more ex- 
pensive the protocol. Protocols that provide synchronous 
communication can require long latency for the multicast 
operation. Those that provide strong guarantees on mes- 
sage ordering append ordering information to each message 
or can impose latency requirements. 

There are a number of weak-consistency protocols that 
provide eventual consistency: they ensure that every mes- 
sage will eventually be delivered to every process, but they 
provide only weak bounds on the time required. Vari- 
ous message orders are possible, ranging from unordered 
delivery to various total orderings. These protocols al- 
low changes to the data base to be processed at any host, 
then later forwarded to other hosts. This provides a highly 
available service, and communication can occur at off-peak 
times; it also handles failures well. On the other hand, the 
application must be able to tolerate temporarily inconsistent 
information. 

The time-stamped anti-entropy method is the heart of 
these protocols. As in the Grapevine anti-entropy proto- 
col [51, messages are exchanged by two processes. The 
exchange of information continues until they are mutually 
consistent. As long as processes in a group continue to per- 
form these exchanges, changes will eventually propagate 
to all replicas. Unlike the Grapevine protocol, this method 
maintains lists of time-stamps at each process. These lists 
are also exchanged, and allow the processes to identify both 
what information the other is missing and what messages 
other processes have received. The ability to indentify 
missing information increases the efficiency and allows 
applications to build stronger forms of consistency. 

Our group has also developed a new light-weight group 
membership mechanism that allows temporary inconsis- 
tencies in membership views [lo]. Each group member 
maintains a view of the group, listing those processes it be- 
lieves to be members. The members use weak-consistency 
communication protocols to ensure that all group members 
eventually converge to a consistent view of the member- 
ship, as discussed in the last section. The mechanism is 
resilient to k 5 n - 2 members failing by crashing, where 
n is the number of members currently in the group. 

4 status 

At the time of writing, the tattler design has been com- 
pleted and the coding of the first prototype is nearing com- 
pletion. The tattler is expected to be fully operational by 
September 1, 1992. The first version uses the Sun Rpc 

98 



protocol to gather information. This allows information on 
a wide variety of host types to be gathered, while remaining 
a manageable programming task. 

Once the tattler becomes operational, it will be used to 
study weak-consistency replication protocols, in particular 
circularity, in addition to its prim- task of host monitor- 

As experience is gained with the tattler, other protocols 
wil l  be added. For example, as the record route option 
could be used to map routes from tattlers to the hosts being 
monitored. Other commonly available network services 
are being investigated as sources of information. 

ing. 
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