
A Replicated Monitoring Tool

Darrell D. E. Longt
Computer & Information Sciences

University of California, Santa Cruz

Abstract

Modeling the reliability of distributed systems requires
a good understanding of the reliability of the components.
Careful modeling allows highly fault-tolerant distributed
applications to be constructed at the least cost. Realis-
tic estimates can be found by measuring the performance
of actual systems. An enormous amount of information
about system performance can be acquired with no special
privileges via the Internet.

A distributed monitoring tool called a tattler is de-
scribed. The system is composed of a group of tattler
processes that monitor a set of selected hosts. The tat-
tlers cooperate to provide a fault-tolerant distributed data
base of information about the hosts they monitor. They
use weak-consistency replication techniques to ensure their
own fault-tolerance and the eventual consistency of the data
base that they maintain.

1 Introduction

Distributed systems are now pervasive. Few system
architects would consider designing a system that could
not interact with other systems. Soon it will be rare to
find computers that are not connected by a network. With
distribution comes an increased incidence of partial failure.
Replication of both control and dah can be employed to
provide systems capable of tolerating partial failures.

To use replication techniques most effectively, it is im-
portant to understand the nature of the failures to be masked.
Recent studies include analyses of Mdem systems [l, 21
and the IBM/XA system [3]. Research covering heteroge-
neous systems is less common. Very few such studies have
appeared in the open literature, although it is certain that
most companies perform reliability studies of their products
intemally.

An earlier study [4] that used the Internet to estimate sev-
eral parameters, including mean-time-to-failure (M'ITF)

+Supported in part by a grant from Sun Microsystems, Incorporated,
and the University of California MICRO program.

and availability. These estimates were then used to derive
an estimate of mean-time-to-repair (MTr'R). While this
study provided many important results, it suffered from
several weaknesses. First, the assumptions made about
the distributions that described host failures may not re-
flect those found in actual systems. Second, the network
that connected the polling host (pollster) to the polled hosts
(respondents) can affect the statistics by reporting false fail-
ures. As aresult, theestimates of the parameters may differ
significantly from the actual values. In particular, the de-
rived estimate of mean-time-to-repair can be much larger
than expected since small errors in the availability estimate
that are introduced by the intervening network can have a
significant effect.

Estimates of mean-time-to-failure were based on re-
ported up-times and not the actual time of failure. This
was the best information available since a host is not in a
position to give its failure time as it goes down. As a result,
there was a bias towards more reliable hosts which means
that the estimate of M?TF is larger than the true value.

Similarly, availability was estimated by the fraction of
hosts that were reachable by the pollster. To ensure that
only hosts capable of answering were queried, an initial
poll was made and only hosts that answered this poll were
counted in the availability census. Unfortunately, there are
a significant number of network segments separating the
pollster from most respondents and so a network failure
may be misinterpreted as a host failure.

The most direct way of determining statistics such as
MTTF and availability is through direct measurement. A
fault-tolerant monitor is being developed that can be placed
at strategic locations around the Internet. Instances of the
monitor will be placed to minimize the amount of shared
network so that a failure of a router or a link will be unlikely
to disable more than one monitor. They replicate their
statistics so that even the permanent failure of one monitor
will not cause a significant loss of information.

These monitors are called tattlers since they periodically
inquire about other hosts and then tattle to each other about
what they learn. The distributeddata base is managed using
an epidemic replication protocol [5,6,7]. Such protocols
provide weak consistency guarantees, which are sufficient

96
0-8186-3170-4/92 $3.00 Q 1992 IEEE

for statistical purposes. Given the frequency of polls and
the potentidy large number of tattlers, a pessimistic repli-
cation protocol is impractical.

2 'IBttlers

For the sake of c o n c m c y and modularity each tattler
is composed of several parts: a client interface, a polling
daemon, a data base daemon, and a tattler daemon.

The polling daemon produces sample observations. It
takes samples at a specified rate, and can be requested to
start or stop sampling using the client interface. The data
base daemon provides stable storage for sample observa-
tions (from the polling daemon), and m e t a d from the
client interface and the tattler daemon. The tattler daemon
is responsible for group membership (adding and delet-
ing tattlers) and managing the Consistency of thereplicated
data base through anti-entropy sessions. The structure of a
tattler is depictedin figure 1.

Other Tattler Daemons

I Tattler I
Daemon w
1

Polling
Daemon

Data base I Daemon 1
Client

Interface

Figure 1: Structure of a "la.

There are several advantages to replicating the tattlers
around the network. First, it provides a fault-tolmt
method for monitoring hosts. All but one of the tattlers
can fail and the set of hosts can s t i l l be monitored (albeit
in a degraded mode). It also provides a way of mitigating
the effect of transient network failures. When monitoring
hosts from a single point, the failure of one router can pre-
vent any host from being polled. When several relatively

independent polling daemons work together, it will be very
unlikely that a total failure can occur. Second, instead of
estimating parameters such as MT"F based on a large sam-
ple with an unknown distribution, the tattlers will be able
to record the actual events (with an epsilon error). Since
the quantities are being directly measured, questions such
as the governing distribution are less important. Third,
because the tattlers are distributed they can perform many
more queries than a single polling program. While a single
polling program would create roughly the same message
traffic, it would be vulnerable to failure. It would also take
significantly longer to complete its task since there would
be no parallelism and it would have to poll for a longer
period to make up for the data lost due to failures.

Collectively the tattlers are responsible for maintaining a
list of hosts to monitor, and collecting statistics on them. A
record of the form (host, poll method, poll interval) is kept
for each host. The client interface allows hosts to be added
or deleted from this list. The recorded statistics are stored
in logs. These logs can take any form, but are initially se
quences of tuples of the form (host, boot time, sample time).

The tattler daemon communicates this information to
other tattlers, using weak-consistency group communica-
tion protocols. These protocols ensure that the logs and
host list are eventually consistent [8] (see 53 for details).
To accomplish this, each tattler daemon periodically con-
tacts another tattler and the two exchange their log and host
files in anti-entropy sessions. Both then merge the informa-
tion to obtain a log with better coverage of the monitored
hosts.

The group communication protocols require the tattlers
to know the identity of the other tattlers. This is done
using a weakansistency membership protocol [9]. This
protocol requires that a new tattler join the group of tattlers
by obtaining one or more sponsors. A tattler can leave the
group by following a two-phase protocol: it first declares
its intent to leave. It can destroy state information once it
knows that aII other tattlers have observed its declaration
of intent. The client interface provides a mechanism to
request tattlers to shut down.

The tattler's state - logs, host list and group information
- are written to secondary storage by the data base daemon
to simulate a fault-tolerant process. When a host on which
the tattler runs fails and recovers, the tattler returns with
a slight case of amnesia It will remember statistics about
events that were written to secondary store, but it wil l not
know about m m recent events that occurred while it was
down. The group communication protocols ensure that it
wil l eventually receive any missing information.

At the heart of the tattler are several event queues. All
the events the tattler must perform in the future are recorded
in these queues, including initiating anti-entropy sessions

91

and polling hosts to obtain measurements. By breaking the
tattlers up into several processes, several activities can take
place concurrently. Since the time when an event occurs
can be important, serializing the events in a single program
could compromise the statistical data.

The polling daemon periodically polls hosts using the
polling method given in the list of hosts. This method is
not coded into the polling daemon; instead, it is provided
as separate programs to be executed by the polling daemon.
This also allows the tattler to go on with its business instead
of waiting for the poll to complete. Polling can be done
at any selected interval, though in the initial configuration
it polls at exponentially-distributed random intervals (with
a given mean) both for statistical purposes and to prevent
synchronous behavior where multiple tattlers poll the same
host at once.

The polling method program is determined from the
poll method field in the host list. The system will provide
methods that use such protocols as Sun RPC and ICMp echo.
By separating the polling method from the tattler daemon,
new methods can be added with relative ease.

Each polling method will require a corresponding merge
method, to be used when other logs are merged with the lo-
cal log. This is necessary because each polling method may
record different information with its own unique semantics.
The tattler daemon is unconcerned with the semantics of
the data that it gathers.

A client interface is provided to manipulate the tattlers.
It allows hosts to be added and deleted from the monitor-
ing list, and allows a user to suspend monitoring of certain
hosts. It can inform a tattler that it should shut down and
leave the process group. Similarly, new tattlers can be
added easily. It is sufficient to contact a single tattler to
perform all of these operations. In fact, the client interface
need only contact the closest tattler, and the group commu-
nication protocols ensure that the operation will eventually
be known by all tattlers.

3 Weak Consistency Replication

The tattler uses new weak-consistency replication and
group membership protocols developed by members of our
research group. The tattler, like many distributed appli-
cations can be written as a group of processes that com-
municate through a group communication protocol. This
protocol ensures that the group member processes have a
consistent view of the service they are to provide, by stip-
ulating the way that messages are sent between processes.
The group communication protocol generally provides a
multicast service that sends a message from one process to
all other processes in the group.

In general, two processes are consistent at time t if
they have received the same set of messages. Various
degrees of consistency place different constraints on the
orders in which the messages can be delivered. In general,
the stronger the consistency requirements, the more ex-
pensive the protocol. Protocols that provide synchronous
communication can require long latency for the multicast
operation. Those that provide strong guarantees on mes-
sage ordering append ordering information to each message
or can impose latency requirements.

There are a number of weak-consistency protocols that
provide eventual consistency: they ensure that every mes-
sage will eventually be delivered to every process, but they
provide only weak bounds on the time required. Vari-
ous message orders are possible, ranging from unordered
delivery to various total orderings. These protocols al-
low changes to the data base to be processed at any host,
then later forwarded to other hosts. This provides a highly
available service, and communication can occur at off-peak
times; it also handles failures well. On the other hand, the
application must be able to tolerate temporarily inconsistent
information.

The time-stamped anti-entropy method is the heart of
these protocols. As in the Grapevine anti-entropy proto-
col [51, messages are exchanged by two processes. The
exchange of information continues until they are mutually
consistent. As long as processes in a group continue to per-
form these exchanges, changes will eventually propagate
to all replicas. Unlike the Grapevine protocol, this method
maintains lists of time-stamps at each process. These lists
are also exchanged, and allow the processes to identify both
what information the other is missing and what messages
other processes have received. The ability to indentify
missing information increases the efficiency and allows
applications to build stronger forms of consistency.

Our group has also developed a new light-weight group
membership mechanism that allows temporary inconsis-
tencies in membership views [lo]. Each group member
maintains a view of the group, listing those processes it be-
lieves to be members. The members use weak-consistency
communication protocols to ensure that all group members
eventually converge to a consistent view of the member-
ship, as discussed in the last section. The mechanism is
resilient to k 5 n - 2 members failing by crashing, where
n is the number of members currently in the group.

4 status

At the time of writing, the tattler design has been com-
pleted and the coding of the first prototype is nearing com-
pletion. The tattler is expected to be fully operational by
September 1, 1992. The first version uses the Sun Rpc

98

protocol to gather information. This allows information on
a wide variety of host types to be gathered, while remaining
a manageable programming task.

Once the tattler becomes operational, it will be used to
study weak-consistency replication protocols, in particular
circularity, in addition to its prim- task of host monitor-

As experience is gained with the tattler, other protocols
wil l be added. For example, as the record route option
could be used to map routes from tattlers to the hosts being
monitored. Other commonly available network services
are being investigated as sources of information.

ing.

Acknowledgments

The weak-consistency protocols used by the tattler were
developed by R. Golding as part of his dissertation research.
K. B. Sriram and J. Wright are contributing to the devel-
opment of the tattler. J. Carroll, K. Thylor and M. Long
contributed through their thoughtful comments.

References

[l] J. Gray, “Why do computers stop and what can be
done about it?,” Tech. Rep. 85.7, ”dem Computers,
June 1985.

121 J. Gray, “A census of Tandem system availability
between 1985 and 1990,” Tech. Rep. 90.1, lhdem
Computers, Jan. 1990.

[3] S. M o d and D. Andrews, ‘The reliability of the
IBM/XA operating system,” in Proceedings 19”
Annual International Symposium on Fault-roleranr
Computing, IEEE, June 1985.

[41 D. D. E. Long, J. L. Carroll, and C. J. Park, “A study
of the reliability of internet sites,” in Proceedings
of the 1 O* IEEE Symposium on Reliable Distributed
Systems, (Pisa, Italy), IEEE, Sept. 1991.

[SI A. Demers, D. Greene, C. Hauser, W. Irish, J. W o n ,
S. Shenker, H. Sturgis, D. Swinehart, and D. “y,
“Epidemic algorithms for replicated database mainte-
nance,” Operating Systems Review, vol. 22, pp. 8-32,
Jan. 1988.

[6] A. D. Birrell, R. Levin, R. M. Needham, and M. D.
Schroeder, “Grapevine: an exercise in distributed
computing,” Communications of the ACM, vol. 25,
pp. 26CL74, Apr. 1982.

ham, “Experience with grapevine: the growth of a
[7] M. D. Schroeder, A. D. Birrell, and R. M. Need-

distributed system,” ACM Transactions on Computer
System, vol. 2, pp. 3-23, Feb. 1984.

[8] R. A. Golding, “Distributed epidemic algorithms for
replicated tuple spaces,” l k h . Rep. lkhnical r e
port HPL-CSP-91-15. Concurrent Systems Project,

‘es, June 1991. Hewlett-I?xhrd Laboraton

[9] R A. Golding, Weak-consistency group communica-
tion and membership. PhD. dissertation, University
of Califomh, Santa CNZ, Sept. 1992 (expected).

[lo] R. A. Golding and K. ”hylor, ‘’Group membership
in the epidemic style,” Tech. Rep. UCSC-CRL-92-
13, Computer and Information Sciences, University
of California, Santa Cruz, Apr. 1992.

