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ABSTRACT

Over the years, hardware trends have introduced a variety of het-
erogeneous compute units while also bringing network and stor-
age bandwidths within an order of magnitude of memory subsys-
tems. In response, developers have used increasingly exotic solu-
tions to extract more performance from hardware; typically rely-
ing on static, design-time partitioning of their programs which can-
not keep pace with storage systems that are layering compute units
throughout deepening hierarchies of storage devices.

We argue that dynamic, just-in-time partitioning of computa-
tion offers a solution for emerging data systems to overcome ever-
growing data sizes in the face of stalled CPU performance and
memory bandwidth. In this paper, we describe our prototype com-
putational storage system (CSS), Skytether, that adopts a database
perspective to utilize computational storage drives (CSDs). We also
present MSG Express, a data management system for single-cell
gene expression data that sits on top of Skytether. We discuss four
design principles that guide the design of our CSS: support sci-
entific applications; maximize utilization of storage, network, and
memory bandwidth; minimize data movement; and enable flexible
program execution on autonomous CSDs. Skytether is designed for
the extra layer of indirection that CSDs introduce to a storage sys-
tem, using decomposable queries to take a new approach to com-
putational storage that has been imagined but not yet explored.

We use microbenchmarks to evaluate aspects of our initial progress:

the impact of partition strategies, the relative cost of function ex-
ecution on Kinetic drives, and the relative performance between
two relational operators (selection and projection). Our use case
measures differential expression, a comparison of quantified gene
expression levels between two or more groups of biological cells.
Based on processor clock rates, we expected 3 — 4x performance
slowdown on the computational storage engine (CSE) of Kinetic
drives compared to a consumer-grade client CPU; instead, we ob-
served an unexpected slowdown of 15x. Fortunately, our evalua-
tion results help us set anchor points in the design space for devel-
oping a cost model for decomposable queries and partitioning data
across many CSDs.
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1 INTRODUCTION

For more than two decades, domain specialists who program data-
intensive systems have had to reach for increasingly exotic solu-
tions to extract more performance from hardware as data sizes in-
exorably grow. In the bygone days of Moore’s law and Dennard
scaling, these specialists could wait for better performance; then,
as CPU improvements slowed, they had to become experts in mul-
ticore parallelism as well as their primary domain. Partitioning a
big data problem into roughly uniform pieces that can be processed
in parallel while minimizing coordination remains a difficult open
problem, far afield from domains such as data science, genomics,
astronomy, and high-energy physics. Recent advances continue to
exacerbate the issue with the introduction of a variety of heteroge-
neous compute units: computational storage drives, FPGAs, GPG-
PUs, TPUs, smart NICs, and DPUs. The confluence of hardware
trends and growing data sizes requires that programmers not only
partition their data as before, but must find a way to partition their
program to increase application or system performance.

State-of-the-art solutions that take advantage of heterogeneous
compute typically follow a static, design-time partitioning of a pro-
gram. For computational storage drives (CSDs), a common appr-
oach has been to identify a computational “kernel” (e.g., a simple
filter or transformation) that fits the device constraints [8, 13, 18].
Execution of the kernel can be “pushed down” to the CSD, a stor-
age element containing one or more computational storage en-
gines (CSE) and persistent data storage. This offloads work from
the host’s CPU (or CSE) and memory subsystem. While effective,
this approach is fragile.

An optimal, static partitioning of a program is likely to change
whenever workload characteristics shift and for varying device
characteristics. Additionally, bandwidths of network and storage
devices have advanced to within one order of magnitude of mem-
ory bandwidth; shifting performance bottlenecks to the memory
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subsystem with a small number of these devices. As the gap be-
tween memory, network, and storage bandwidths shrink, compute
units will continue to be layered throughout the storage hierar-
chy to keep pace with growing data sizes. Static partitioning of
programs cannot keep up with layers of heterogeneous compute;
a more general approach is necessary to partition and distribute
programs effectively across deeper storage hierarchies.

We argue that emerging data-intensive systems can be designed
to overcome these limitations and support dynamic, just-in-time
partitioning of computation across heterogeneous resources by ap-
plying a few well-known database concepts: the relational model,
the notion of data independence, query planning and processing,
and optimization techniques. Our solution, “decomposable quer-
ies,” involves decomposing a query plan into a super-plan and sub-
plans where each sub-plan is a complete, independent query plan.
This approach requires a coordinated representation, of data and
of the expressions which transform it, at each level of the storage
hierarchy containing CSEs. A coordinated understanding of this
representation enables the movement of data up the storage hier-
archy, the movement of expressions down the storage hierarchy,
or both.

We draw our motivating use case from a biomolecular engineer-
ing research application involving the analysis of single-cell gene
expression data. Piggybacking on advancements in DNA sequenc-
ing, single-cell technologies have revolutionized molecular biology.
Where genomics can convey what versions of genes are present
in a cell, single-cell RNA sequencing reveals what genes are tran-
scribed, and possibly used, in a cell. Biologists process single-cell
transcriptomics data using various pipelines to produce single-cell
gene expression data, representing the quantities of each gene found
in each cell. While there are international data repositories for
single-cell gene expression, such as the Human Cell Atlas or the
EBI Gene Expression Atlas, there are no existing efficient systems
to support biologists in probing these datasets. Our motivating
use case is to support identification of clusters within, and across,
gene expression datasets. This requires providing biologists with
support to transparently leverage modern, heterogeneous devices
with minimal added complexity.

In this paper, we describe our prototype computational stor-
age system, Skytether, that offers a solution to the crisis of ever-
growing data sizes in the face of stalled CPU performance and
memory bandwidth by adopting a database perspective. Skytether
is designed to partition data and program execution across a hi-
erarchy of CSEs while minimizing CPU overheads and maximiz-
ing utilization of storage, network, and memory bandwidth. We
also present MSG Express, a data management system for single-
cell gene expression data that sits on top of Skytether. Together,
Skytether and MSG Express leverage existing technologies to trans-
parently support analysis of gene expression levels for scientists
who are accustomed to running jobs on their laptops over tiny
data sizes. We quantify a measure of differential expression using
a T-statistic. Differential expression reflects the levels of gene ex-
pression in one group of cells contrasted against another group
and is a fundamental calculation for many scRNA-seq analyses. We
show how gene expression data can be partitioned and how the
T-Statistic can be calculated using CSDs. We then present some ex-
periments to evaluate the current generation of Seagate’s Kinetic
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drives, using specific computation and filter pushdowns, to justify
our decisions and inform future work (such as cost-based query
optimization).

Section 2 discusses the urgency and the potential impact of data
management for our data domain. In section 3, we discuss back-
ground and related work on smart drives and programmable stor-
age that has influenced our approach of decomposable queries. In
section 5, we discuss our design principles and decisions, present
an experiment to justify our partition strategy for our data domain,
and discuss how our design insulates us from specific hardware de-
cisions (providing the benefits seen in bygone days). In section 6,
we present experiments to: (1) measure the performance of a partic-
ular computation kernel over a variety of hardware configurations
using a single computational storage device and (2) an experiment
to measure the performance of simple relational operations on a
host CPU compared to a device CPU. We determine that the cur-
rent generation of Kinetic drives do not yet provide efficient device-
side query evaluation. In section 7, we reflect on the experimental
results from section 6 and how they will inform future work on
developing a cost-model for decomposable queries.

2 MOTIVATION

Current molecular biology and genomics approaches, especially
pertaining to single-cell technologies, have a desperate need for
more efficient and performant analytics solutions. Genomics has
seen an explosion of data over the last 20 years. DNA sequencers
can now produce raw data outputs from 60 GB to 360 GB to 16
TB [17, 31, 32] and this trend is still continuing. However, DNA
and RNA sequencing can only give a broad understanding of the
genome and cellular state for an experiment as a whole. Single-
cell technologies enable biologists to probe the genomes (DNA)
and transcriptomes (RNA) for hundreds of thousands of individ-
ual cells in a single experiment, achieving unprecedented levels of
resolution about tissue organization, organism development, and
disease processes [19].

Single-cell RNA sequencing (scRNAseq) has continued to im-
prove and evolve since it was developed in 2014, enriching already
complex data with even more structure, thus increasing the size
of datasets (expression matrices). More labs continue to adopt scR-
NAseq for their own research; consequently, the amount of scR-
NAseq data has grown exponentially and biologists now face a
daunting challenge to compare experimental results with previ-
ously published results. Further compounding this daunting chal-
lenge, bioinformatics consortiums, such as the Human Cell Atlas
(HCA), are serving as hubs for datasets and workloads from many
international research labs.

Single-cell gene expression data lends itself well to partitioning.
Each single-cell experiment produces a matrix of data that can be
easily encapsulated in its own dataset. Columns and rows of these
datasets are independent and can be partitioned into multiple ob-
jects on a single storage device or across storage devices in straight-
forward ways. Although a particular data model and partition strat-
egy can be straightforward, the various approaches greatly affect
query performance; and, they are compounded by the variety of
physical designs and query execution strategies. Then, especially
for data housed by bioinformatics consortiums, biologists must
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Figure 1: Logical representation of differential expression
(“T-statistic”) as a query plan. Actual implementation of the
T-statistic calculation is imperative. A different colored bor-
der around a partial aggregate node denotes it to be a par-
tial aggregate over multiple partial aggregates. Partial aggre-
gates are computed over partition slices.

perform extensive data integration and normalization. The design
space and data processing requirements make it nearly impossible
to effectively do scientific research, such as validate or determine
the novelty of finding a new cell type or state, without becoming
an expert in data management and storage systems. Empowering
the management of single-cell gene expression data would better
enable medical and/or biological insights such as discovering and
characterizing the types of biological cells.

Differential expression quantifies the difference of gene expres-
sion levels between two or more groups of cells and underlies many
analyses necessary to understand the role of various genes in nor-
mal and diseased settings. Thus, supporting efficient differential
expression calculations presents a timely use case and is emblem-
atic of a problem well-suited for computational storage. We use
a T-statistic to quantify differential expression, a statistical algo-
rithm that can benefit from the same partitioning strategy as the
gene expression data it is computed over. The T-statistic is logically
depicted as a query plan in Figure 1.

At its core, differential expression requires scanning the entirety
of two input datasets, computing summary statistics, and then com-
paring those summaries. In some cases, and with various trade-offs,
these datasets can be aggressively partitioned and their summaries
can be computed incrementally.

3 BACKGROUND AND RELATED WORK

Ceph and SkyhookDM. We use Ceph and SkyhookDM as a start-
ing point to design Skytether. Ceph is a distributed storage system
that uses an object storage model and emphasizes reliability and
autonomy [42]. The goal of Ceph was to allow object storage de-
vices (OSDs) in a storage cluster to act semi-autonomously while
preserving consistency; maximizing availability; and performant,
extensible data access [41]. Generally, an OSD is a storage service

that uses the object storage model and runs on a server or “intelli-
gent device” Ceph also provides a powerful, extensible data access
interface that allows for application semantics to be defined closer
to the data. SkyhookDM is a project that leverages this object in-
terface to implement relational data access for Ceph storage ob-
jects [10, 24, 25]. Our prototype, Skytether, uses SkyhookDM as a
primary reference for how to implement relational operations and
query engine logic on OSDs; however, the design of Skytether is
not tightly coupled to either implementation.

In general, there are two key principles from Ceph that influence
our design: autonomy and extensibility. Ceph achieves autonomy
and scalability through shared nothing data access and having an
OSD store everything it needs to self-manage its state consistently.
Ceph achieves extensibility through the use of object classes that
can be registered with an OSD and customizes the logic executed
on the access path for a data object. With autonomy as a guiding
principle, we ensure that CSDs store everything they need to self-
manage their state or execute pushdowns (a “pushed down” pro-
gram). With extensibility as a guiding principle, we ensure that an
OSD (or OSD-like service) is able to execute a program stored in
the CSD. Shared nothing data access ensures that communication
within the storage hierarchy is bounded eliminates dependencies
between objects and allows for scale-out over many storage de-
vices.

For Skytether, we assume access to Ceph or a Ceph-like system
for scalability and reliability features such as replication. Then, to
decouple OSD state and CSD state, we introduce a nested, indepen-
dent key-value namespace for data stored on the CSD. This accom-
modates CSDs in a way that preserves the benefits of Ceph’s archi-
tecture, ensuring that the OSD and CSD do not need to coordinate
on data names. Because OSDs are strictly earlier on the data ac-
cess path than CSDs, key-value names can be derived from object
names (and are thus balanced and bounded [35]) and thus can be
generated by any processor in the storage system. This makes coor-
dination easy on the CSD side and hard on the OSD side. However,
we note that CSDs are capable of storing aliases for data names lo-
cally for device-specific reasons further motivating this approach.

In addition to the design principles we adopt, Ceph supports
custom storage backends for efficient utilization of various storage
devices. In May 2020, Aghayev, Weil, and others described research
on “BlueStore,” a new storage backend for Ceph [3]. As part of their
paper, the authors argue that new, custom storage backends can
provide great benefits compared to fitting general-purpose file sys-
tem abstractions to their needs. This world view naturally aligns
with enabling autonomy of CSDs.

CSDs and Kinetic Drives. Computational storage drives (CSD)
have been around for decades. They were first explored as “data-
base machines” in the 1970s and 1980s [5, 30], then as “intelligent
disks” in the late 1990s [21, 22]. In the late 1990s and early 2000s,
they were also called “active disks” [2, 34, 38]. As storage drives
equipped with modest processors and working memory, they pres-
ent an alluring opportunity to improve data processing and re-
trieval performance by moving computational kernels to the data;
an opportunity made more attractive now that CPUs can no longer
promise exponential increases in performance over time and on-
device bus bandwidths are better able to move data into on-device
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Figure 2: Simplified hardware architecture of a Kinetic drive
(CSD). The computational storage engine (CSE) is located on
Envoy (the SoC module). Envoy communicates with a host
through the ethernet interface and with persistent storage
through the SATA interface. The current Kinetic drive im-
plementation uses hard drives (HDD) for persistent storage.

CPUs. We use CSDs as an approach to dispersing, or scaling out,
available compute resources.

Due to the storage requirements of scRNAseq data, we specifi-
cally use CSDs with hard drives (HDDs) as persistent storage, as
opposed to solid-state drives (SSDs) where much research has been
done. Our prototype computational storage system (CSS) uses Ki-
netic drives—a Seagate research vehicle for an inexpensive, mod-
ular approach to computational storage. The current implementa-
tion of Kinetic drives uses a module, called Envoy, containing a
system-on-chip (SoC) as the computational storage engine (CSE)
and a discrete HDD for persistent storage (depicted in Figure 2).
Data is accessed via the kinetic protocol which provides a key-value
interface [14, 33]. The current Kinetic drive implementation trades
modularity for performance: the additional cost and complexity of
a Kinetic drive is concentrated on Envoy (and, subsequently, some
accommodations by an enclosure).

Envoy contains a general-purpose, power-efficient CPU and pro-
vides a familiar, server-like operating system that allows develop-
ers to: load shared libraries onto the device; store binaries in key-
values as “plain-old data”; and load programs from key-values, dy-
namically linking and executing them. Program execution looks
as if we are executing it from the SoC directly. Programs can write
results to the drive, but can also return results synchronously if
desired.

Architecturally, research on the “Newport CSD” from October
2020 most closely resembles Kinetic drives, with a similar archi-
tecture and execution environment [12]. The Newport CSD is de-
scribed to have three distinct subsystems: (CS) the computing sub-
system which, like a CSE, processes data; (FE) the front-end sub-
system listens for NVMe commands and translates read and write
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commands to the back-end subsystem; (BE) the back-end subsys-
tem that runs the storage controller logic such as wear levelling,
garbage collection, and flash translation layer (FTL).

The Newport CSD and current generation of Kinetic drives both
use the same general-purpose Arm® processor (Arm® Cortex®-
A53 [26]) for the CS and a server-like OS. The Newport CSD has
an “Arm® M7” for its FE and another one for its BE. Also, the BE
shares silicon with the FE and CS. In comparison, the Envoy on a
Kinetic drive is both the FE and CS; thus requiring that delegating
compute to the Kinetic drive be carefully balanced with in-flight
data accesses. Additionally, the BE for the Kinetic drive is a dis-
crete storage device connected by a SATA interface, meaning that
there is no shared silicon between the persistent storage and En-
voy. However, the SATA interface is not a limiting factor for Kinetic
drives which use an HDD for persistent storage.

Although we use Kinetic drives in this paper, their similarities
with Newport CSDs provide a perfect example of when decompos-
able queries can be effective. A disk service, Kinetic AD, runs on En-
voy and implements the server side of the kinetic protocol. Kinetic
AD decouples high-level data access (gets and puts) from low-level
data persistence (writing and reading data from the block device).
We use this key-value interface to access semantically meaningful
dataset slices and to provide other high-level mechanisms while
Kinetic AD manages the storage device itself to optimally store
and access key-values. To use a Newport CSD as we do Kinetic
drives, we simply need to add a service, similar to Kinetic AD, that
insulates data access from the specific hardware architecture of the
computational storage device. The only decision would be whether
to run an object-level storage service or a key-value storage service
on the Newport CSD.

Computational Storage System. The approaches to compu-
tational storage most similar to ours are from the bodies of work
about intelligent disks [22] and active disks [34]. Research in both
of these areas discuss CSDs with general-purpose CSEs and server-
like operating systems running on each CSE. The similarities are
unsurprising when considering that Kinetic drives are Seagate’s
research vehicle for a modern, spiritual successor to active disks.
However, in both cases the researchers use the lens of a traditional,
relational DBMS which differs from our approach leveraging an
object storage model.

Keeton mentions a software architecture similar to what we pro-
pose with Skytether on Kinetic drives: 1-run a complete shared-
nothing database server and operating system on each CSD [22].
However, her dissertation evaluates a hypothetical system and se-
em to use a different software architecture: 4-run a reduced oper-
ating system, the storage/data manager, and relational operators
on each CSD.

Riedel mentions two design issues at a high level, but does not
implement them or detail approaches: (1) partitioning of code for
active disks and (2) why dynamic code [34]. What Riedel sugge-
sts for partitioning of code aligns very closely with decomposable
queries and his definition of dynamic code aligns very closely with
our idea of storing a query engine on a CSD to be loaded and exe-
cuted on the CSE.

Since 2012 there has been much research on computational stor-
age using active flash [7, 11, 37] and SSDs [6, 12, 13, 18, 20, 23,
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27, 39, 44]. Despite the wealth of research in computational stor-
age, we do not know of any recent published work that aims to
send query plans to a CSD for independent processing and execu-
tion. The closest we have found is Ibex [44]-which supported se-
lection, projection, and GROUP BY aggregation as pipelined compo-
nents in an FPGA-and research from Sungchan Kim, Hyunok Oh,
et al. [23]. Sungchan Kim, Hyunok Oh, et al. discuss in-storage pro-
cessing (ISP) at a very low level, detailing hardware components
and customizing hardware logic executed on a flash memory con-
troller [23]. Other research describe work at a similarly low level
interacting with flash controllers, FPGAs, or hardware-specific im-
plementations: YourSQL [18] and work from Wei Cao, et al. extend-
ing POLARDB [8]. Tobias Vincon, et al. also describe similar work
on near-data processing (NDP) for HTAP workloads [39]; but, their
work and work on IS-HBase (in-storage computing for HBase) [9]
look at accelerating key-value databases. Most other research on
query processing over computational storage explore push-down
of a single operator or of supporting functions [13, 40]. There is
also some work on computational storage for zoned namespaces
(ZNS) SSDs that discusses an open source approach using eBPF
(extended Berkeley packet filter) [27].

Ultimately, Keeton and Riedel both envision an approach similar
to ours, but discuss and evaluate approaches similar to recent com-
putational storage research that pushes down single relational op-
erators or supporting functions. Also, nearly all of the research on
computational storage uses the lens that data is distributed across
CSDs and functions pushed to the CSEs process a shard of the data.
Our approach to computational storage attempts to treat each CSD
as its own sub-database, capable of managing itself but expected
to cooperate within a storage hierarchy.

4 DESIGN PRINCIPLES

In this section, we discuss our guiding principles and our design re-
quirements. We have mentioned several requirements for our com-
putational storage system (CSS) in passing, but here we formalize
them:

R1 Support biologists and application developers as transpar-
ently as possible.

R2 Maximize utilization of storage, network, and memory ba-
ndwidth.

R3 Minimize data movement through the storage hierarchy.

R4 Enable flexibility to add new, heterogeneous compute uni-
ts in a storage hierarchy; especially, CSDs.

Supporting biologists. Our primary, guiding principle is to
transparently support biologists in their management and analy-
sis of single-cell gene expression data (gene expression). Biologists
collect scRNAseq datasets in discrete experiments, which are then
stored for later analysis and re-analysis to quantify gene expres-
sion. Analysis of gene expression can then later be analyzed and
re-analyzed to gain insight into the state and function of individual
biological cells (single-cells). As gene expression data continues to
grow over time, becoming far too large to be hosted on a single
host, it requires the use of hard drives (HDDs) as the primary stor-
age medium. Our CSS should accommodate HDDs in the storage
hierarchy.

To best support biologists, our CSS should allow biologists to
process gene expression data using familiar interfaces and without
them being prescriptive about the physical design of the data or the
architecture of the system. We expect that gene expression analysis
will be written in the R or Python programming languages, so our
CSS should support intuitive interfaces to these languages.

Gene expression data is processed by a bioinformatics pipeline,
producing discrete datasets—expression matrices (expr matrices).
Each expr matrix can be treated as a distinct storage object that
can be loaded directly into a CSS and presents a natural boundary
for a partition strategy. Expr matrices may have the same data prop-
erties, but can vary greatly in their metadata and scientific context;
thus, the only extra information our CSS should require to load an
expr matrix is metadata describing the columns (single-cells) and
rows (genes) represented in the expr matrix.

Directly loading expr matrices with minimal transformation low-
ers the barrier to data ingest and efficient analysis which is valu-
able for scientific computing. Research in “NoDB,” from Alagiannis,
Idreos, Ailamaki, and others [4, 16], highlights some of the needs
and benefits. The similarities between our approach and NoDB is
mentioned in more detail after we define our physical database de-
sign (section 5.1).

Maximizing bandwidth utilization. With the gap between
memory, network, and storage bandwidths shrinking, CSEs pro-
vide more than just an extra compute unit. Scaling out memory
bandwidth at CSEs and CSDs is cheaper than scaling up memory
bandwidth at expensive compute complexes (compute nodes in
a cluster). However, pushing down compute is incredibly latency
sensitive, as bottlenecks in the storage hierarchy are cumulative
across CSEs on the data path. On the other hand, executing com-
pute can be worth the overhead if it reduces unnecessary data
movement into compute complexes. A more general approach than
static partitioning of programs is necessary to keep pace with di-
versifying hardware and deepening storage hierarchies. An effec-
tive CSS should be able to opportunistically push down compute,
but quickly adapt if actual workloads prove too intensive for CSEs
lower in the storage hierarchy.

Minimizing data movement. A promise of CSDs is that data
movement can be reduced throughout the storage hierarchy. The
amount of data accessed at a storage device is invariant (with re-
spect to how it is stored), but the fewer buses a data object tra-
verses, the less energy it uses and the fewer CPU cycles it con-
sumes. Additionally, specifically for HDDs, we use the principle
that data should not be re-visited too frequently. When data is
pulled off of the HDD and the CSE is done with it, we can loosely
assume that it is cached somewhere higher in the storage hierar-
chy.

Flexibility and Autonomy. Our design prioritizes flexibility
and autonomy. Flexibility refers to program execution that can be
deferred, when a CSE is overloaded, to an earlier CSE in the data
access path (higher in the storage hierarchy). Autonomy refers to
physical data design and program execution on a CSD according
to its device characteristics. Designing for both flexibility and au-
tonomy enables the use of new, distinct CSDs or CSEs and allows
for the mix of compute unit types to change.

To enable flexibility, query plans should support annotations, or
some plan-level metadata, of what sub-plans have been executed.



For example, if a CSE determines that its load is too high, it can
decide to pass data up the storage hierarchy and return an anno-
tated query plan (marked as “not executed”). The server, or up-
stream CSE, can see that the query plan was not executed by the
downstream CSE and execute the plan on the incoming data. This
provides flexibility for services with fewer resources or higher con-
tention to execute fewer operations to reduce overall waiting. Ad-
ditional information, such as quality-of-service metadata, can be
included in the annotations; this could enable behaviors such as
indicating when a push down can be attempted again.

To enable autonomy (independence of CSEs), query plans shou-
1d be logical and expressed at a sufficiently high level. A CSE must
be able to decompose a query plan, propagate sub-plans down the
storage hierarchy, and execute any remaining portion of the super-
plan. Additionally, the CSE should be able to optimize a received
query plan with respect to its system characteristics and physical
data design. Logical query plans communicate intent, but allow a
CSE to decide how to satisfy that intent. In the case of CSEs with
general-purpose processors, there may be minimal changes to the
query plan. However, this approach provides the necessary indi-
rection to allow CSEs with specialized accelerators to execute spe-
cialized functions or decompose the query plan for other CSEs or
CSDs (directly attached or downstream in the storage hierarchy).

Cost-based query optimization requires extensions of existing
cost models to permit an optimizer to reason over different “cuts”
of a query plan into upstream and downstream portions. From the
perspective of a decomposable query system, a custom-built filter
pushdown is a degenerate case of a cut, in which only the leaf of a
query tree (an access method and a selection predicate) is evaluated
on a downstream CSE; it would consider this plan among many
others.

5 COMPUTATIONAL STORAGE SYSTEM

The addition of computational storage devices (CSDs) to a storage
system introduces an extra layer of indirection for compute-data
accesses from a storage server can be in the form of programs and
not just function or API calls. We call a storage system designed for
this additional complexity a computational storage system (CSS).
This section discusses our design for a CSS, which we view as many
storage services running on computational storage engines (CSEs)
in a storage hierarchy. At the bottom of the hierarchy are persistent
storage components serving data, and throughout the hierarchy
are CSEs that the data may pass through until it gets to a compute
node (cluster or application). In many ways, a CSS can be thought
of as a distributed DBMS over dis-aggregated, computational stor-
age. We use this lens to take a new approach to computational
storage that has been imagined but not yet explored.

5.1 Physical Design

For MSG Express, a dataset is a table containing application data
that is handed to our storage system. Thus, datasets naturally rep-
resent an expr matrix. We physically represent an expr matrix as
a table with the same layout (genes as rows), though the pivoted
orientation can also be supported (genes as columns). For conve-
nience, we support custom metadata attached to a dataset; oper-
ations on datasets propagate this metadata into the result dataset.
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We also support application-defined groupings of datasets, called
domains, to improve usability and as hints for performance. For ex-
ample, we may want to have a domain for expr matrices generated
from a particular research lab or for a particular set of experiments
that we expect to analyze together.

Storage Model. Our data storage model has two primary lay-
ers: logical and physical. The logical layer, consisting of storage
servers, uses an object storage model. The physical layer, consist-
ing of CSDs, uses a key-value storage model. In general, these two
models are similar in many ways, but in this paper we use objects
to refer to data that may be decomposed and distributed, and key-
values to refer to data that cannot be further decomposed. For ex-
ample, in the case that there is only object-level storage, the under-
lying storage backend may still need to physically split the object’s
data.

In contrast to other object storage systems, we map object loca-
tions to many storage servers to support parallel data access. We
call this approach an autonomous object model, where portions of
an object may be managed by many storage services and each ob-
ject can have independent (autonomous) physical design. A par-
tition refers to the portion of an object that is managed by a par-
ticular storage service. Autonomous physical design of partitions
can be leveraged for data that can be efficiently processed within
a CSD, in which case transformation to a normalized physical de-
sign can be done on the CSD when returning results to a storage
server, or it may be done on the storage server.

Data Model. We split a dataset into a set of partitions that we
may distribute across many storage devices. Each partition is split
into many slices, our smallest logical unit of storage. Some aspects
of the physical design are established when splitting a partition.
These aspects are properties of the data and not stored as meta-
data; splitting can be done at any layer (even by the application)
and will be respected throughout the CSS (to avoid unnecessary
operations). There are many data slices that contain the data and a
single metadata slice containing the schema for the partition and
other metadata. Examples of slice metadata include system-specific
metadata such as indexes and physical design hints, or application-
specific metadata which we transparently preserve.

To ensure a loose coupling between the logical and physical lay-
ers, a slice may be physically split across many key-values. This al-
lows slicing of a partition to occur at a higher level of abstraction as
well as allowing a CSD to alter the mapping of slices to key-values
for device-specific reasons. By default, a partition is split across
slices such that a row is kept intact and a column is split. Then,
we use the maximum size of a key-value to determine how many
rows are contained in each slice. If the slice is striped across many
key-values, then the total key-value size is used when maximizing
slice size. This decision is discussed further in Section 6.2.

Data Access Model. As in other object storage systems, we
store object names in a single namespace. Key-values are in CSD-
local namespaces, meaning that the logical layer does not care
about key names and if a partition is not stored on a CSD, then data
access goes through only the object-level namespace. Our system
spans both logical and physical layers by naming slices (by con-
vention) using a dense, numerical suffix on the partition key name.
Using a simple convention means we can name any slice from any
CSD, obviating the need for the logical layer to manage slice names.
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Figure 3: High-level view of a computational storage system. Storage servers may be backed by a variety of storage devices (local
or computational). A storage service handles requests and translates it into the appropriate back-end data access operation.
If a Storage server is backed by a local storage device, only an object-level namespace is used. Kinetic drives house a discrete
storage device, in contrast to a Newport CSD which is a single device.

This naming also allows us to easily remember the order data was
written (write-order) and index slices by values of interest.

When code is executed on the data access path for a particular
object, other objects are inaccessible. In this way, objects have no
logical dependence and so can be independently placed and repli-
cated. Although, they can physically share resources by being man-
aged by the same storage service. This design point is not enforce-
able at the CSD level unless we place constraints on the relation-
ship between object names and key names. Although this seems
like a drawback, it allows us to use metadata slices for system-
specific indirection to support features such as materialized views.
Additionally, due to this relaxed constraint at the physical layer, we
allow for object names to be remapped to new key-value names by
the CSD.

In general, the logical layer needs to balance partition load and
partition utilization, whereas the physical layer needs to balance
device load and device utilization. Partition load is how frequently
a partition is accessed. Partition utilization refers to the volume of
data within a partition that is frequently accessed, e.g. the relative
(32%) or absolute volume (24 GiB) or regional patterns (the first x
slices).

Slices are an atomic unit for executing relational operations. If
concurrent update requests conflict on a set of key-values, then one
of the update requests will fail and none of its target key-values
will be updated. This must be supported at the CSD level, though
it should suffice for it to be an in-memory mechanism if it is not
supported in-storage. A slice may also be called an in-memory slice
when it is in volatile memory or an in-storage slice when we refer
to how it is persisted on a storage device.

The logical layer of our storage model handles partitions and the
physical layer handles slices. In some ways, partitions are akin to
data pages and slices are akin to blocks that a data page may be de-
composed into. A domain is comparable to a database schema (e.g.
“public”). These similarities allow us to accept and store datasets
with minimal logical changes which provides benefits similar to
NoDB [4]. Practically, we are assuming that the extraction and

transformation portions of ETL are handled by the application and
the user-facing library that interacts with Skytether (such as MSG
Express). This allows user applications to be more transparently ac-
commodated by the CSS and the alignment of a database perspec-
tive with storage system concepts allows the CSS to better support
database operations such as indexes and query processing.

To maximize utilization of CSDs, our design prioritizes flexibil-
ity and autonomy. Flexibility refers to program execution that can
be deferred, when a CSE is overloaded, to an earlier CSE in the data
access path (higher in the storage hierarchy). Autonomy refers to
physical data design and program execution on a CSD according
to its device characteristics. Designing for both flexibility and au-
tonomy enables the use of new, distinct CSDs or CSEs and allows
for the mix of compute unit types to change.

5.2 Programming Model

The Kinetic protocol [33] uses a key-value interface for data ac-
cess and program execution. Program execution is initiated by an
exec command, which loads the program binary from a set of key-
values and executes it. The executed program also uses the Kinetic
protocol for data access; thus, a program that accesses data from a
Kinetic drive can be stored and executed with almost no changes.

To execute a query engine on a Kinetic drive, the binary for the
query engine must be stored and executed. The libkinetic library
implements the kinetic protocol and can be used by the query en-
gine for key-value data accesses. The exec command accepts argu-
ments and propagates them to the program being executed. For a
query engine, arguments may include a query plan and other ar-
guments to control behavior of the query engine.

MSG Express is primarily written in C++, but we support Python
via Cython bindings to our C++ core. Then, we provide a conve-
nience module that can be imported into R via the reticulate pack-
age. In this way, we implement functionality in C++, provide use-
ful Python bindings, and make it easy to use those Python bind-
ings from R. Spanning these languages is how we coordinate both
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Figure 4: High-level view of control and data flow for query
processing in Skytether. (1) send logical query plan to CSE,
(2) send sub-plan to downstream CSE, (3) send results and
annotated query plan to upstream CSE, (4) complete execu-
tion of the super-plan and remaining portions of the sub-
plan, (5) send results to client. Results can be requested
asynchronously if preferred (steps 3 and 5 can be pull-
based).

data representation and expressions throughout the application
and storage hierarchy.

To transparently support scientific applications and interface
with an active data processing community, we use the Apache Ar-
row (Arrow) library for data representation and expressing queries.
Arrow supports bindings and popular data processing interfaces
for both R and Python, enabling high-level applications with low
overheads. Thus, we accept application data and expressions from
either language, allowing our system to handle everything at the
data management level.

5.3 Query Planning and Execution

MSG Express takes expressions from R or Python, translates them
to a query plan to be sent to a CSE running Skytether. Then, Skyte-
ther decomposes the query plan, propagates a sub-plan to a down-
stream CSE, receives data and the same sub-plan (with annota-
tions), maybe executes any of the query plan not executed, then
propagates the result set upstream. Figure 4 shows a high-level
overview of this sequence.

We use substrait [36] to represent logical query plans and its
annotations (in-tree or independent). Substrait provides an open,
high-level query plan representation that we can optimize in two
passes and execute in two passes. To maximize flexibility, opti-
mization and execution may occur concurrently. The initial query
plan is provided, or constructed, from user-facing libraries and so
the query engine on each CSE only needs to parse and transform
the substrait representation. Query optimization is naively done in
two passes: (1) at an upstream CSE, such as a storage server at the
logical layer, and (2) at a downstream CSE, such as a CSD at the
physical layer. An optional third pass of optimization transforms
the super-plan for interactive, or incremental, execution concur-
rently on the upstream CSE (more details below).

Optimization at an upstream CSE represents a best-effort “re-
quest” to a downstream CSE to process some data. This pass can
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be adaptive, requesting the storage device do more computation
if it is able to execute the whole sub-plan with minimal overhead;
or, requesting the storage device do less computation if previously
sent sub-plans were only partially executed.

Optimization at a downstream CSE represents a dynamic, real-
time optimization of the query plan. The CSE will execute the
query plan for some number of slices to better predict the actual
execution cost of the query plan. If the measured overhead is min-
imal, then the CSE may choose to process the entire query plan. If
the measured overhead is above some threshold (which can be in-
dependently determined and adjusted), then the CSE may decide
how much of the query plan to execute on the remaining slices.
In this case, the storage server may execute the remainder of the
query plan itself.

Query execution is done in two passes: (1) at a downstream CSE,
and (2) at the upstream CSE. It is possible to receive the results syn-
chronously, or retrieve results later asynchronously. This flexibil-
ity of a push or pull model of data movement allows us to overlap
an optional third pass of optimization with both passes of execu-
tion. Also, due to each slice requiring separate accesses, the query
engine can choose to make result sets accessible after each slice,
some batch of slices, or after all slices.

The simplest execution scenario occurs if the downstream CSE
initiates push back and does not execute any of the sub-plan. Then,
the upstream CSE will execute the remainder of the sub-plan and
the super-plan on results from the downstream CSE. The most com-
plex execution scenario is if the downstream CSE executes a por-
tion of the sub-plan, streams results and the annotated query plan
back to the upstream CSE, and the upstream CSE executes the re-
mainder of the sub-plan and the super-plan on the results—either
as they arrive or in batches.

The optional third pass of optimization is initiated when the
storage device has completed execution of its sub-plan on some
initial slices. In this case, the super-plan may be merged with the
incomplete portion of the sub-plan and the merged query plan can
be optimized. The decision for this additional, adaptive optimiza-
tion pass can be made statically (configured) or dynamically (de-
pending on query plan complexity such as how many relations to
join).

CSDs do not have infinite resources and are usually sized based
on cost concerns. Therefore these devices may not have enough cy-
cles for all requested compute. To effectively utilize network and
storage bandwidth, it is necessary for program execution to be dy-
namic and adaptive, so that execution of a program portion can be
“pushed back” up the storage hierarchy (deferred) to a more power-
ful CSE when load is high. In these cases, the accessed data would
move up the hierarchy and the query plan annotated in a way that
signifies that no work was done.

6 EVALUATION

In this paper, we present an evaluation that focuses on the follow-
ing three questions:

Exp 1 Differential expression aggregates values within a row
(a gene), but these aggregates are best interpreted in groups
(set of genes). Should we co-locate more columns (single-
cells) in a slice, or more rows (genes) in a slice?
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Exp 2 Pushing down compute is latency sensitive, as IO bot-
tlenecks are cumulative across CSEs on the data path. What
is the code path overhead of executing a query on Envoy via
Kinetic AD?

Exp 3 Two relational operators, selection and projection, are
the simplest query plans we can push down to a CSD that
have the highest potential for reduced data movement. How
should we quantify their cost?

For each experiment, we measure the performance (using la-
tency in milliseconds) of some portion of calculating the differ-
ential expression t-statistic. As described in section 2, we use a
t-statistic to measure differential expression between two datasets.
For this paper, we implemented Student’s formulation of t-statistic
in C++ using Arrow. We use three functions to compute the differ-
ent aggregations in Figure 1. The first partial aggregate, applied
after a selection and projection, is represented by Accumulate. The
second partial aggregate is represented by Combine and merges
two sets of partial aggregates (each the result of an Accumulate)
into a single set of partial aggregates. The final aggregate is repre-
sented by TStat and merges two sets of partial aggregates into the
final t-statistic result. These experiments cover a variety of per-
formance characteristics and some initial experimental variables.
Given the large design space, and the difficulty in initially setting
anchor points within that design space, we leave further experi-
ments for future work.

6.1 Experimental Hardware

For experimental hardware, we are interested in the processors and
hard drive characteristics. Other components will be important for
a full end-to-end evaluation in the future, but for our experiments
in this paper we isolate processor and hard drive performance as
much as possible.

Processors. For the server, we used a consumer-grade x86-64
CPU: E3-1270 v3 (released in June 2013). This CPU has a base fre-
quency of 3.5GHz, 4 cores and 8 threads, and cache sizes of 64K B,
256K B, and 8MB for L1, L2, and L3 caches, respectively.

The CSD has a module, called Envoy, which contains a Marvell®
ARMADA 88F3720 [43] system-on-chip (SoC). The SoC uses an
Arm® v8-A CPU: Arm® Cortex®-A53 (released in October 2012).
This CPU has a base frequency of 1GHz (up to 1.2GHz), 2 cores,
and cache sizes of 32KB and 256KB for L1 and L2 caches, respec-
tively.

Hard Drives. For the server, we used a consumer-grade HDD:
ST2000DM008. This is a 2TB SATA drive with 4096 bytes per sector,
16 read/write heads, a cache buffer of 256 MB, and a maximum data
transfer rate of 220MB/s.

For the CSD, we used a nearline-grade HDD: ST16000NM000G.
This is a 16 TB SATA drive with 4096 bytes per sector, 18 read/write
heads, a cache buffer of 256 M B, and a maximum data transfer rate
of 261MB/s.

6.2 Exp 1. Varying Slice Dimensions

Motivation. To take advantage of additional memory bandwidth
in a computational storage hierarchy, data must be partitioned ef-
fectively. Analysis of gene expression data frequently filters on
both rows and columns; but, we prefer to split an expr matrix such
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Figure 5: The total CPU latency of executing Accumulate on
each slice of a single dataset. We measure latency directly on
the CSE and omit IO latency (Accumulate is never waiting
on I0). Despite the expected impact of slice dimensions, we
find that slice height has almost no effect on performance,
only the number of function invocations.

that each slice contains all of the columns (single-cells) for some
subset of the rows (genes).

For our data model (single-cells as columns, genes as rows), dif-
ferential expression compares two sets of columns, representing
two clusters (groups) of single-cells. Many approaches for measur-
ing differential expression lend themselves towards a uniform par-
titioning of single-cell gene expression data; this is especially true
for the T-Statistic. Expression levels are grouped by row and aggre-
gated into three summary statistics: mean, variance, cardinality. If
a row is distributed amongst many CSDs, its data must travel up
the storage hierarchy to calculate the summary statistics. If a col-
umn is distributed amongst many CSDs, then the summary statis-
tics must travel up the storage hierarchy to determine the differen-
tial expression.

Given the characteristics of differential expression, we expect
that maximizing the width of slices (column count) will minimize
data movement (R3). Access to many columns in a slice maximizes
temporal locality when aggregating values into summary statistics,
benefiting from vector instructions to compute row-wise aggre-
gations and cache utilization. Whereas, maximizing the height of
slices (row count) will maximize bandwidth utilization (R2). Access
to many rows in a slice maximizes the number of CSDs a dataset
can be partitioned across and minimizes the number of accesses to
load a whole column into memory from a partition; thus, increas-
ing parallelism of data access (across partitions) and spatial locality
(across slices of a partition).

Setup. We measure the total performance of executing Accumu-
late on each slice of a single dataset. We apply the function on each
slice of a partition, measuring latency of the function directly on
the CSE and after the slice has been scanned (no filtering) into mem-
ory so as to omit performance of the inter-device data path (HDD,
networks) from the results. The slice characteristics we vary are:
(1) the number of columns and (2) the number of rows. Slices are



located on a single HDD, representing one of two scenarios: (1)
a query plan has been received and can be fully satisfied within
the CSD or (2) every sub-plan was pushed back and the CSE must
execute this sub-plan over the returned slices.

Figure 5 shows the total latency of executing Accumulate on 300
slices of a single partition (E-GEOD-76312 [1, 15]) to measure the
sensitivity of a single partial aggregate to various slice dimensions
(row and column counts). For clarity of reading the figure, there
are four trend lines representing 4 combinations of CSE and row
count. The trend lines, from top to bottom, are:

1; purple-dotted 48 rows on Envoy
2; purple-solid 480 rows on Envoy
3; orange-dotted 48 rows on client
4; orange-solid 480 rows on client

Analysis. To answer the question of sensitivity to slice dimen-
sions, we compare trend lines 1 and 2, annotated in red on fig-
ure 5. For a given slice height, increasing the slice width results in
a minimal increase in latency. This validates that, for Accumulate,
very wide slices do not introduce a performance penalty. However,
contrary to expectations, having fewer rows per slice seems to
have a dramatic performance penalty. We believe the performance
penalty comes from the overhead of invoking Accumulate many
times and not from a difference in the different slice dimensions.
The only difference between trend lines 1 and 2 is the height of
each slice and invocations of API-level functions; the same amount
of data is processed in both cases and the same number of arith-
metic instructions are executed. This means that trend line 1 in-
vokes Accumulate 300 times, whereas trend line 2 invokes Accu-
mulate 30 times. We find that slice height also has almost no effect
on performance, only the number of function invocations.

In comparison to trend lines 1 and 2, trend lines 3 and 4 seem
to have a much smaller gap in performance. That gap is better un-
derstood when we compare trend lines for the same slice dimen-
sions but different CSEs. When we compare trend lines 1 and 3, we
see that for slices of the same dimensions, the Envoy processor is
approximately 13x slower than the client processor (on average).
The green annotations on the figure highlight this for slices with
48 rows and 1600 columns. Trend lines 2 and 4 show the same
performance difference.

Takeaway. The effects of row count and column count on total
latency suggest that either partitioning strategy—vertical (columns)
or horizontal (rows)-is viable from a processing perspective on a
single CSD. However, the best partitioning strategy will be the one
that results in fewer slices; or, many slices should be loaded into
memory before executing a function such as Accumulate.

6.3 Exp 2. Varying Execution Configurations

Motivation. To reduce bottlenecks at downstream CSDs and help
improve bandwidth utilization, an extracted sub-plan should be ap-
propriately sized for the downstream CSD it will be sent to. The
overhead of determining the portion of the sub-plan to execute at a
CSD is worthwhile if that cost is negligible or if the upstream and
downstream CSDs can be confident in the sizing of the sub-plan.
Being able to mark a sub-plan as being “confidently sized” would
potentially create a fast-path for query optimization at the down-
stream CSD.
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To minimize bottlenecks (R2) when sending sub-plansto a down-
stream CSD, we need to understand the code path overhead of ex-
ecuting a query plan on the CSD. Then, the overhead can be ac-
commodated in a cost model to better size extracted sub-plans to
propagate downstream. To learn the code path overhead of Kinetic
AD and Kinetic drives, we compare a client processor to Envoy in
a variety of configurations.

Program execution on a Kinetic drive is initiated by sending a
command, Exec, to Kinetic AD that specifies a key name prefix and
arguments to propagate to the executed program. The key name
prefix is used to load many keys into memory that collectively con-
tain the program binary. Thus, a query is executed as follows:

(1) Load binary for query engine

(2) Execute query engine with provided arguments (e.g. query
string or query plan)

(3) Return status

The query engine is like any C++ program that takes some argu-
ments, executes some logic, then returns an output or writes the
output to one or more key-values.

Setup. We use a specific partition (E-MTAB-6819 [29]), measur-
ing only the performance of executing Accumulate on each slice
(figure 1) and plot summary statistics as a box plot. Accumulate is
implemented as a program that is stored on the Kinetic drive (us-
ing a put command) instead of being passed as a query plan to a
query engine.

We use 4 distinct execution configurations (exec config) to com-
pare the relative performance of a client processor and the En-
voy processor, and to control for the relative performance of a
consumer-grade HDD (locally connected via SATA) and a nearline-
grade HDD (connected to Envoy via SATA). An execution configu-
ration is labeled as <Compute>|<IO>, where <Compute> represents
the processor executing the TStat function:

Client x86-64 CPU on a host machine (ArchLinux)
KineticVM x86-64 CPU on a VirtualBox VM (Ubuntu)
Envoy Arm® v8-A CPU on the Envoy CSE

The second portion of the execution configuration, <IO>, repre-
sents which HDD was used:

KineticVM consumer-grade HDD locally connected to the ho-
st machine but only accessed through the VM via “Virtual-
Box raw vmdk”

Envoy nearline-grade HDD directly connected to Envoy.

Each of the 4 statistical summaries in figure 6 show mean, stan-
dard deviation, min, max, lower quartile, median, and upper quar-
tile. Dashed lines show the mean and standard deviation as a dia-
mond. Solid lines show the other statistics as a box plot. For con-
ciseness, we number the configurations from left to right: the first
configuration is Client|KineticVM and the fourth configuration is
Envoy|Envoy.

The Envoy|Envoy configuration (Configi) has significant out-
liers in the first 5 slices of the partition, so we plot the first 5 slices
of each configuration separately without annotations for mean and
standard deviation. In our experimental results, the compute thread
was never waiting on a data request, so we omit timings for each
slice data request from the figure.
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Figure 6: CPU latency for each slice of a dataset in varying execution configurations. An execution environment is labeled
<Compute>|<IO>. The first portion describes where a pushdown function is executed. The second portion describes what stor-

age device is used for data access.

Analysis. We frame our analysis using 3 pairs of execution con-
figurations from Figure 6, which we number like so:

(1) Config; and Configa (control)
(2) Config; and Configg (hard drive)
(3) Configy and Configg (compute location)

The first configuration pair acts as a control, both the Client and
KineticVM use the same hardware (CPU and HDD) and access data
through Kinetic AD. Additionally, the KineticVM executes the bi-
nary in the same way as on the Client with only the extra over-
head introduced by the virtual machine. We see that the virtual
machine itself introduces some negligible slowdown. The second
configuration pair highlights the effects of using a different HDD
for data access. We see that the Envoy HDD (the HDD it uses)
does not introduce any slowdown at all. The lower latencies are ex-
pected due to accessing the consumer-grade HDD via VirtualBox
and the difference in performance between the consumer-grade
HDD and nearline-grade HDD. Finally, the third configuration pair
shows that the relative slowdown when running the compute func-
tion on the Envoy CPU is significant: 15x. From the differences
in base frequency and cache properties of the client and Envoy
CPUs, we expect a difference of 3 — 4x. This means that there is
an additional 4 — 5x slowdown that comes from architectural dif-
ferences. This means that, assuming perfect scale-out, 8 Kinetic
drives would have equivalent throughput as a single x86-64 CPU
instead of the expected 4 Kinetic drives.

Takeaway. The code path overhead of executing a query on a
Kinetic drive is much larger than expected. We expected an over-
head of 3 — 4x but saw an overhead of 15x. We believe much of
this is specific to the pipeline architecture of the Envoy CPU (Arm®
Cortex®-A53) and the performance can be addressed. We also find
that Kinetic AD does not introduce much overhead.

In section 5.3, we mention that query optimization can use some
initial slices to determine actual costs of operations in the query
plan. This experiment shows that for some CSEs (such as Envoy),
initial slices may have abnormally high latency costs (left graph
in Figure 6). For real-time optimization to be useful, Skytether will
need some mechanism to accommodate this discrepancy in perfor-
mance between earlier and later slices.
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Figure 7: CPU latency (in milliseconds) of executing selec-
tion and projection on a partition (E-GEOD-76312). Selection
predicate has 16.9% selectivity, projection sizes are for 3%,
7%, and 14% of the partition width.

6.4 Exp 3. Latency of Selection and Projection

Motivation. To model cost for query plans we push down to CSDs,
we want to understand the relative performance of relational op-
erations. This understanding will allow us to assign costs to rela-
tional operations in a query plan, enabling decomposing and trans-
forming query plans as appropriate for our data model and various
CSE architectures. Accommodating costs of relational operations
can be done in the query engine running on the CSD to support
real-time optimization (R4) or it can be done in an upstream CSE if
there is a sufficiently accurate understanding of the performance
and capabilities of the downstream CSE (R2).

Setup. We evaluate relative performance of two relational oper-
ations that we expect to be the most common operations to push
down to CSDs: selection and projection. We run this experiment on
an Arrow table with 2,000 columns and 12, 000 rows, which fits
entirely into the Envoy’s DRAM. We begin timing after the table
is already loaded into memory to avoid HDD performance from
obfuscating CPU performance.



The selection operation filters table rows using some predicate.
For this experiment, we use a single inequality using an integer
literal (SRR3052220 > 10) that represents a common use case to re-
move a particular aspect of noise in the data domain. This predicate
has 16.9% selectivity, meaning that 83% of the rows are filtered
out.

The projection operation filters table columns using some iden-
tifier. We vary the number of columns in the projection to be 3%,
7%, and 14% of the partition’s total columns. These column counts
represent a projection of 1, 2, and 3 column families, respectively,
in the data domain (clusters of single-cells), and were chosen to
verify that projection is not sensitive to column counts using se-
mantically relevant values. Although projection is a simple oper-
ation, it is a higher-level function in the Arrow API than what is
used in Experiment 1 to vary slice widths.

Figure 7 shows our experimental results, measuring average la-
tency (in milliseconds; averaged over 10 runs) of selection and pro-
jection as six stacked bars. Each bar represents the total average
latency of projection and selection (red). The bottom portion of
each bar (blue) is the average latency of only projection. The aver-
age latency for only the selection operation is not shown, but can
be derived by subtracting the blue portion (lower number) from
the red portion (higher number).

Analysis. The stacked bars highlight that the projection opera-
tion is 40% of the average latency of executing selection and pro-
jection. The relative timings of these operations are consistent for
each projection size and each CSE, which suggests that neither im-
pact the relative performance of projection.

When comparing bars for different CSEs and for a particular
projection size (e.g. 70 columns), we see that the Envoy proces-
sor has a significant slowdown of 15x in comparison to the server
processor. This re-affirms the takeaway from Experiment 2 (but
for higher-level functions) that the Envoy processor has an addi-
tional 4 — 5x slowdown than expected.

Takeaway. The relative performance of selection and projec-
tion is that projection is faster by a small amount, compared to a
selection predicate that uses a single column. This informs us that
these two operations can be given a similar cost for the same size
partition. We believe this costing generalizes to CSEs using either
of these processor architectures (x86-64 and Arm® v8-A); despite
the performance gap between the two CSEs, the relative perfor-
mance between selection and projection is consistent and suggests
to us that performance improvements for one operation will bene-
fit the other operation equally.

7 DISCUSSION AND FUTURE WORK

We now have insight into the impact of partition strategies. It is
surprising that both partition strategies seem to have similar per-
formance on a single device for a straightforward use case. Exper-
iment 1 purposely focused on omitting communication costs due
to the variety of possible communication patterns.

There are still significant trade-offs at higher levels of abstrac-
tion (the TStat function vs the Accumulate function), but this result
means that various physical designs may be viable in combination
with various communication scenarios. Future evaluation will ac-
commodate this sizable design space to determine a cost model for
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a physical design and its impact on bandwidth utilization (R2) and
data movement (R3).

Using microbenchmarks, we have evaluated the relative cost of
function execution on Envoy and observed an unexpected slow-
down of 15x (instead of 3 — 4x) on Envoy (the Kinetic CSE) for
compute functions such as Accumulate. This slowdown is also ob-
servable for simple relational operations—projection and selection.
Despite the shortcomings of the current implementation of En-
voy, hardware improvements can be independently researched and
we believe such improvements can transparently improve perfor-
mance of program execution.

We have gained experience with Arrow for coordinating repre-
sentation and expressions across a hierarchy of CSEs and scien-
tific applications. Arrow appears to be a good choice, with contin-
uing improvements that we can benefit from. Open source tooling
that prioritizes interoperability allows for the development stack
to gain new features while having lower less development burden
on hardware engineers.

In addition to compute functions and relational operations, we
can benefit from Arrow Flight-a recent component of Arrow. Fli-
ght uses similar underlying technology as the Kinetic protocol but
reduces data copies between an application and network library.
This will generally reduce latencies for the query engine on a CSE
when communicating with upstream or downstream CSEs. Flight
would be especially useful for program execution on a Kinetic drive,
which uses a network library to communicate with Kinetic AD for
each read and write operation on slices. We also plan to integrate
with, and evaluate, substrait for query plan representation to fully
realize decomposable queries.

In the future, we will use many CSDs together to validate our
expectation that 16 CSDs will allow Skytether to have an end-to-
end latency comparable to a client processor for functions such as
Accumulate. We will use decomposable queries to show how we
maximize bandwidth utilization (R2) by scaling across all of the
CSDs, while also aggressively caching summary statistics (results
from Accumulate and Combine) to minimize data movement (R3).
There is a large design space to consider for: utilization of HDD
capacity for cached results, the effect of CSD load on query opti-
mization, and how many useful sub-plans can be extracted from a
complex query plan (like in figure 1). It will be a challenge, but we
aim to explore major points in this design space using decompos-
able queries and autonomous CSDs (R4).

The evaluation results (section 6) help us set anchor points in
the design space for a cost model. We can now move forward with
partitioning data across many CSDs and developing a generaliz-
able cost model for aggregation functions and relational operators
for CSDs. We believe we can continue our approach using Sea-
gate’s research CSDs—-Kinetic drives—due to the Kinetic AD inter-
face. We also look forward to exploring more complex storage hi-
erarchies, potentially with more levels and heterogeneity of CSEs
(R4).

The characteristics of single-cell gene expression data and dif-
ferential analysis align well with partitioning of data and compute.
Gene expression matrices can be naturally encapsulated in an inde-
pendent dataset, where columns and rows are independent. We be-
lieve these characteristics also exist for high-energy physics (HEP)
datasets where particles and observations of particle state can be
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stored independently. Where bioinformatics consortiums, such as
the HCA, present a datacenter-like environment, HEP also has in-
ternational, multi-lab collaborations such as the European Council
for Nuclear Research (CERN). In future work, we plan to general-
ize our work by reusing relevant parts of MSG Express, or possibly
generalizing MSG Express itself.
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