
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/280091830

Reducing the Energy Footprint of a Distributed Consensus Algorithm

Conference Paper · September 2015

DOI: 10.1109/EDCC.2015.25

CITATIONS

5
READS

975

2 authors:

Some of the authors of this publication are also working on these related projects:

Next generation erasure coding methods for cloud storage View project

Replicated Data Management View project

Jehan-Francois Paris

University of Houston

165 PUBLICATIONS 2,570 CITATIONS

SEE PROFILE

Darrell D. E. Long

University of California, Santa Cruz

316 PUBLICATIONS 9,286 CITATIONS

SEE PROFILE

All content following this page was uploaded by Jehan-Francois Paris on 28 November 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/280091830_Reducing_the_Energy_Footprint_of_a_Distributed_Consensus_Algorithm?enrichId=rgreq-71345fed7d5b05d2da62e5758b1e84cd-XXX&enrichSource=Y292ZXJQYWdlOzI4MDA5MTgzMDtBUzozMDA3OTYzMzY5ODQwNzRAMTQ0ODcyNjg0MzkzNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/280091830_Reducing_the_Energy_Footprint_of_a_Distributed_Consensus_Algorithm?enrichId=rgreq-71345fed7d5b05d2da62e5758b1e84cd-XXX&enrichSource=Y292ZXJQYWdlOzI4MDA5MTgzMDtBUzozMDA3OTYzMzY5ODQwNzRAMTQ0ODcyNjg0MzkzNA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Next-generation-erasure-coding-methods-for-cloud-storage?enrichId=rgreq-71345fed7d5b05d2da62e5758b1e84cd-XXX&enrichSource=Y292ZXJQYWdlOzI4MDA5MTgzMDtBUzozMDA3OTYzMzY5ODQwNzRAMTQ0ODcyNjg0MzkzNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Replicated-Data-Management?enrichId=rgreq-71345fed7d5b05d2da62e5758b1e84cd-XXX&enrichSource=Y292ZXJQYWdlOzI4MDA5MTgzMDtBUzozMDA3OTYzMzY5ODQwNzRAMTQ0ODcyNjg0MzkzNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-71345fed7d5b05d2da62e5758b1e84cd-XXX&enrichSource=Y292ZXJQYWdlOzI4MDA5MTgzMDtBUzozMDA3OTYzMzY5ODQwNzRAMTQ0ODcyNjg0MzkzNA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jehan-Francois-Paris?enrichId=rgreq-71345fed7d5b05d2da62e5758b1e84cd-XXX&enrichSource=Y292ZXJQYWdlOzI4MDA5MTgzMDtBUzozMDA3OTYzMzY5ODQwNzRAMTQ0ODcyNjg0MzkzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jehan-Francois-Paris?enrichId=rgreq-71345fed7d5b05d2da62e5758b1e84cd-XXX&enrichSource=Y292ZXJQYWdlOzI4MDA5MTgzMDtBUzozMDA3OTYzMzY5ODQwNzRAMTQ0ODcyNjg0MzkzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Houston?enrichId=rgreq-71345fed7d5b05d2da62e5758b1e84cd-XXX&enrichSource=Y292ZXJQYWdlOzI4MDA5MTgzMDtBUzozMDA3OTYzMzY5ODQwNzRAMTQ0ODcyNjg0MzkzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jehan-Francois-Paris?enrichId=rgreq-71345fed7d5b05d2da62e5758b1e84cd-XXX&enrichSource=Y292ZXJQYWdlOzI4MDA5MTgzMDtBUzozMDA3OTYzMzY5ODQwNzRAMTQ0ODcyNjg0MzkzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Long?enrichId=rgreq-71345fed7d5b05d2da62e5758b1e84cd-XXX&enrichSource=Y292ZXJQYWdlOzI4MDA5MTgzMDtBUzozMDA3OTYzMzY5ODQwNzRAMTQ0ODcyNjg0MzkzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Long?enrichId=rgreq-71345fed7d5b05d2da62e5758b1e84cd-XXX&enrichSource=Y292ZXJQYWdlOzI4MDA5MTgzMDtBUzozMDA3OTYzMzY5ODQwNzRAMTQ0ODcyNjg0MzkzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_Santa_Cruz?enrichId=rgreq-71345fed7d5b05d2da62e5758b1e84cd-XXX&enrichSource=Y292ZXJQYWdlOzI4MDA5MTgzMDtBUzozMDA3OTYzMzY5ODQwNzRAMTQ0ODcyNjg0MzkzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Long?enrichId=rgreq-71345fed7d5b05d2da62e5758b1e84cd-XXX&enrichSource=Y292ZXJQYWdlOzI4MDA5MTgzMDtBUzozMDA3OTYzMzY5ODQwNzRAMTQ0ODcyNjg0MzkzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jehan-Francois-Paris?enrichId=rgreq-71345fed7d5b05d2da62e5758b1e84cd-XXX&enrichSource=Y292ZXJQYWdlOzI4MDA5MTgzMDtBUzozMDA3OTYzMzY5ODQwNzRAMTQ0ODcyNjg0MzkzNA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Reducing the Energy Footprint of a Distributed Consensus Algorithm

Jehan-François Pâris Darrell D. E. Long1

Department of Computer Science
University of Houston

Houston, TX, USA 77204-3010
jfparis@uh.edu

Department of Computer Science
University of California

Santa Cruz, CA, USA 95064
darrell@cs.ucsc.edu

Abstract—The Raft consensus algorithm is a new distrib-
uted consensus algorithm that is both easier to understand and
more straightforward to implement than the older Paxos algo-
rithm. Its major limitation is its high energy footprint. As it
relies on majority consensus voting for deciding when to
commit an update, Raft requires five participants to protect
against two simultaneous failures. We propose two methods for
reducing this huge energy footprint. Our first proposal consists
of adjusting Raft quorums in a way that would allow updates
to proceed with as few as two servers while requiring a larger
quorum for electing a new leader. Our second proposal
consists of replacing one or two of the five Raft servers with
witnesses, that is, lightweight servers that maintain the same
metadata as other servers but hold no data and can therefore
run on very low-power hosts. We show that these substitutions
have little impact on the cluster availability but very different
impacts on the risks of incurring a data loss.

Keywords-Distributed computing; Fault-tolerant computing;
Green computing; Distributed consensus; Paxos; Raft algorithm

I. INTRODUCTION
Distributed consensus algorithms allow multiple partici-

pants in a distributed system to agree on the values of some
replicated data. They are essential to the development of
fault-tolerant services because they allow multiple servers to
act as one. They are also notoriously complex because they
have to handle both server crashes and all kinds of
communication failures.1

We can distinguish two main classes of consensus algo-
rithms depending on the kinds of faults they tolerate.
Byzantine consensus algorithms assume that faulty compo-
nents of a distributed system could send incorrect,
inconsistent messages to their peers [8]. Other consensus
algorithms assume that the system components will either
operate correctly or stop operating. In other words, they will
only experience fail-stop failures [17]. The best known non-
Byzantine consensus algorithm is Leslie Lamport’s Paxos
algorithm [10, 11]. Paxos offers the two advantages of
having been proved to be correct and being efficient in the
standard case. At the same time, it is both hard to understand
and difficult to implement [14]. Consider for instance the
Chubby lock service [3, 4]. It was designed to provide
coarse-grained locking for loosely-coupled distributed

1 Supported in part by the National Science Foundation under awards CCF-
1219163 and CCF-1217648, by the Department of Energy under award
DE-FC02-10ER26017/DE-SC0005417 as well as by the industrial
members of the Storage Systems Research Center.

systems and offer limited amount of reliable storage. Its first
version [3] relied on a third-party fault-tolerant database that
had known replication-related bugs. It was later decided to
replace this version with a locally developed solution that
would use the Paxos algorithm [4]. Reporting on their
experience, its authors mention that “[t]here are significant
gaps between the description of the Paxos algorithm and the
needs of a real-world system.”

Ongaro and Ousterhout recently proposed the Raft
consensus algorithm to overcome these limitations [13, 14].
As noted by Howard et al., Raft is easier to understand and
easier to implement than Paxos [6]. A remaining limitation
of Raft is the large number of servers it requires. Because it
uses majority consensus voting for deciding when to commit
an update, Raft requires 2n + 1 participants to protect against
n simultaneous failures. As a result, most Raft clusters use
five servers in order to be able to tolerate two failures. In
other words, a single Raft cluster has the same power
requirements as five non-replicated servers. These require-
ments are likely to remain acceptable as long as Raft
supports lightweight services that can run on low-power
nodes comprising an energy-efficient processor and no hard
disk. This is much less true when applications require full-
fledged servers.

We propose to address this issue by investigating the
possibility of implementing Raft on clusters with fewer than
five full-fledged servers. We note that failures that affect the
durability of the data stored on a Raft cluster are much less
frequent than those that affect the availability of the service
it implements. We then introduce solutions that address
separately these two issues. Our first proposal consists of
adjusting Raft quorums in a way that would allow updates
to proceed with as little as two servers while requiring a
larger quorum for electing a new leader. So, a Raft cluster
with four nodes, an update quorum of two and a leader election
quorum of three would offer good protection against data loss
while remaining slightly more available than a conventional
Raft with three nodes. Our second proposal consists of
replacing one or two of the five servers with witnesses [15].
In this context, these witnesses will be lightweight Raft
servers that maintain the same metadata as other servers but
hold no data. As a result, they can run on very low-power
hosts such as the Raspberry Pi [22]. We show that both
configurations provide similar cluster availabilities as a Raft
cluster with five full servers and very good to adequate
protection against data loss depending on the number of
servers replaced by witnesses.

Client

Consensus
module

State
machine

Log

Fig. 1. The Raft architecture (after [OO14]).

The remainder of this paper is organized as follows.
Section II reviews the main features of the Raft algorithm.
Section III presents our overall approach for reducing its
energy footprint. Section IV introduces our Raft cluster with
four servers and evaluates its robustness in terms of system
availability and risk of data losses. Section V does the same
for RAFT configurations including witnesses. Finally,
Section VI has our conclusions.

II. THE RAFT ALGORITHM
In this section, we present the salient features of the Raft

algorithm focusing on its update algorithm and the protocol
it uses for handling leader failures.

A. Overview
Ongaro and Ousterhout designed the Raft algorithm to

run on clusters consisting of at least three servers, like the
one in Fig. 1. Each of its component servers includes a log,
a consensus module and a state machine. Raft guarantees
that, at any time, a majority of these state machines will
remain in agreement. In other words, each Raft cluster
implements a replicated state machine [9, 18].

Raft uses a strong leader model where each cluster has a
single leader that manages the whole cluster and other
servers are mere followers. As a result, the cluster leader is
solely habilitated to receive requests from clients, forward
them to its followers and decide when they can be safely
applied to everyone’s state machines.

Leaders maintain their leadership status by sending
periodic heartbeats to their followers. Any follower that
stops receiving these heartbeats will call for an election and
propose itself as the new leader.

Raft partitions time into terms of arbitrary length that are
identified by consecutive sequence numbers. A new term
starts each time a server calls for an election. It will either
end if the election results in a split vote or continue as long
as the newly elected leader maintains its leadership status.
Terms play in Raft the role of a logical clock [7] and allow
servers to detect obsolete information, such as requests from
a stale leader. All communications between servers include
the sequence number of the current term.

B. Normal operation
When a leader receives a request from a client, it

appends it to its log, gives it a sequence number within the
current epoch and forwards it to its followers through an

AppendEntry remote procedure call. All followers that have
up-to-date logs append the new command to their logs and
notify the leader of that fact. Whenever the leader notices
that some followers did not reply, it resends the command
and repeats the process until all followers have acknowl-
edged the request.

As soon as the leader has replicated the log entry on a
majority of the servers, it commits it and applies it to its own
state machine. This action also applies to all preceding
entries in the leader’s log, including entries created by a
former leader in a previous epoch. Commit decisions are
propagated to other servers by including the index of the last
committed update in all future messages sent by the leader,
including AppendEntry calls and heartbeats.

C. Handling leader failures
Raft uses a timeout mechanism for detecting leader fail-

ures: any follower that has not received a message from its
leader in a given amount of time will call for an election,
announce its candidacy for the cluster leadership position
and vote for itself. A main problem with this solution is that
split votes will occur whenever two followers call elections
at the same time. Raft reduces, but does not completely
eliminate this risk, by using randomized election timeouts.

When a former follower becomes a candidate for the
cluster leadership position, it sends a message containing a
summary of the state of its log to all other servers. Servers
receiving that message will vote for the candidate unless any
of following three conditions holds:

1. They believe they still have a leader,
2. They have already voted for another candidate, or
3. Their own log is more “up to date” than the candi-

date’s log.
The last restriction ensures that candidate cannot collect

a majority of the votes unless its log contains all committed
updates.

The newly elected candidate will require all its followers
to duplicate in their logs the contents of its own log. To
achieve that, it will resend to each of its followers all its log
entries starting from the last entry for which both servers
agree.

D. Cluster membership changes
RAFT handles cluster membership changes by requiring

the change to involve both a majority of the servers in the
old cluster and a majority of the servers in the new cluster.

III. REDUCING RAFT ENERGY FOOTPRINT
The major motivation for having five servers in a Raft

cluster is to allow the cluster to tolerate two simultaneous
failures. This property holds because a Raft cluster with five
servers will accept updates from it clients as long as three of
its servers can participate in an update quorum and will
never commit updates to fewer than three servers.

Requiring five servers in each Raft cluster is likely to
remain acceptable as long as Raft supports lightweight
services that can run on low-power architectures built
around an energy-efficient processor, a small amount of
memory and a flash drive replacing the hard disk. Exem-
plars of these architectures include Pergamum tomes, but
without their attached disk, [20], FAWN nodes [1] and the
Raspberry Pi [22]. This is much less true when applications
require full-fledged servers that have a non-negligible
energy footprint.

We propose to reduce this emerging footprint by running
Raft on configurations with fewer conventional servers. At
present, we do not want to alter in any way the logic of the
Raft algorithm, which excludes the use of dynamic voting
algorithms [5].

We define the availability of a Raft cluster as the fraction
of time it will be able to process user requests and the
durability of its log updates by the probability it will never
lose any committed update. Typical Raft clusters satisfy
these requirements by guaranteeing that:

1. The cluster will remain available as long as three of
its five servers remain available, and

2. All log updates will always apply to at least three
logs.

We believe that this second requirement is excessive.
First, disk failures are much less frequent than server
crashes. Even assuming a disk failure rate of 11.8 percent
per year, which is typical for consumer disk drives at the
very end of their useful lifetime [2], disk mean times to
failure would remain close to eight years and a half and an
individual disk would have a 99.97 percent probability of
not failing over a 24-hour interval. This is to say that we
may let a cluster occasionally run with a single server as
long as it happens infrequently and for short time intervals.

When stronger durability guarantees are required,
running the cluster with at least two operational servers
should be enough. While irrecoverable read errors are still a
possibility, their impact should remain negligible as long as
the size of the log and its state machine are less than a few
hundred megabytes.

The solutions we propose are tailored to three different
scenarios with different demands on cluster availability and
log update durability:

1. When log update durability is more important than
cluster availability, a Raft cluster with four servers
will offer both a much better update durability and a
higher data availability than a Raft cluster with three
servers.

2. When log update durability and cluster availability,
are equally important, a Raft cluster with four servers
and one witness will offer nearly the same
availability than a Raft cluster with five servers and
almost as strong guarantees on update durability.

4 3 2

2' 1' 0'

4λ

μ
2μ

2λ

2μ

2λ

3μ

λ

4μ

2λλ

Fig. 2. A Raft cluster with four servers, an update quorum of two and an
election quorum of three.

3. When cluster availability is more important than
update durability, a Raft cluster with three servers
and two witnesses will provide nearly the same
availability than a Raft cluster with five servers but
have much weaker guarantees on update durability.

IV. RAFT CLUSTERS WITH FOUR SERVERS
The correctness of the Raft algorithm requires that its

update quorum and its leader election quorum intersect in
order to ensure that the new leader will always have the
most up-to-date version of the update log and its associated
state machine. The algorithm satisfies this condition by
using majority consensus voting [19, 21]. Using distinct
quorums would not affect the correctness of the algorithm as
long as:

1. The update quorum and the leader election quorum
intersect.

2. The leader election quorum remains greater than or
equal to the update quorum.

Consider now a Raft cluster with four nodes, an update
quorum of two and a leader election quorum of three. It
would guarantee that all updates will always be applied to at
least two servers and require three servers to recover from
the loss of a leader. The main advantage of this scheme is
that most updates will be applied to all servers. A smaller
fraction of the updates will be applied to three of the four
servers and even fewer updates applied to two of the four
servers. Hence, the cluster will have a significantly lower
risk of a data loss than a Raft cluster with three clusters.

The behavior of our four-server scheme can be described
by its state transition diagram. As Fig. 2 shows, the cluster
has six possible states. State <4> is the original state where
all four servers are available. A failure of one of the servers
would bring the cluster to state <3>. We note three distinct
transitions from this state:

1. A recovery transition corresponds to a repair of the
server that crashed and returns the cluster to state
<4>.

2. A failure of one of the two followers of the current
leader of the cluster will bring the cluster to state

<2>. Note that the cluster will still be able to accept
log updates since it still satisfies the update quorum
of the cluster.

3. A failure of the current leader of the cluster will bring
the cluster to state <2'>. Note that the cluster will
then be both unable to accept log updates because it
lacks a leader and unable to elect a new leader
because that would require three servers.

Both states <2> and <2'> have similar failure transitions
to state <1'> and recovery transitions to state <3>. State
<1'> corresponds to the state of the cluster when only one
server remains available and the system cannot accept any
update. The state has a failure transition to state <0'> and a
recovery transition to state <2'>. Finally, state <0'> has a
recovery transition to state <1'>.

To derive the cluster availability, we need to make a few
additional assumptions. We will model our cluster as a set
of servers with independent failure modes. Whenever a
server fails, a repair process is immediately initiated for that
server. Should several servers fail, this repair process will be
performed in parallel on those servers. We assume that
server failures are independent events and are exponentially
distributed with mean λ. In addition, we require repairs to
be exponentially distributed with mean μ. Both hypotheses
are necessary to represent our system by a Markov process
with a finite number of states.

The equilibrium conditions for our system are:

,4
,4)(2)3(

,3)22(

,
,2)22(

)(2)3(
,4

'1'0

'0'22'1

'13'2

32

'2243

34

pp
pppp

ppp
pp

pppp
pp

λμ
μλμλ

μλμλ
λμλ

μλμλ
μλ

=
++=+

+=+
=+

++=+
=

where pi is the probability of the cluster being in state <i>,
with the additional condition:

. 1'0'1'2234 =+++++ pppppp

Solving the system of linear equations and substituting
μ

λρ = we obtain:

1. The availability of the cluster A4(ρ)

,
)+(1

)8 5 (1)(5

2

2344 ρ
ρρρ ++

=++= pppA

2. The probability P4,2(ρ) that the cluster will accept
updates with only two of the four servers available:

.
)+(1

4)(5

2

22,4 ρ
ρρ == pP

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Failure rate to repair rate ratio

A
va
la
bi
lit
y

RAFT(5)
RAFT(4)

RAFT(3)

Fig. 3. Compared availabilities of Raft clusters with three, four and five
servers.

Deriving the same values for conventional Raft clusters
with respectively three and five servers is a much easier task
because both clusters require a majority of their servers to
be available in order to perform both log updates and leader
election quorums. Observing that the availability of a single
server A is

,
+1
 1
ρ

=A

we have

3

2
2,3

3

23
3

)+(1
 3

)1(3)(
)+(1

 3 1
)1(3)(

ρ
ρ

ρ
ρ
ρ

ρ

=

−=

+
=

−+=

AAP

AAAA

for a Raft cluster with three servers, and

.0)(
)+(1
01 5 1

)1(10)1(5)(

2,5

5

2

2345
5

=

++
=

−+−+=

ρ
ρ

ρρ
ρ

P

AAAAAA

Fig. 3 displays the availabilities offered by the three
configurations for values of the failure rate-to-repair rate
ratio ρ. A zero value indicates a server that would never
crash and a 0.20 value a server that would be available 83.3
percent of the time. Conversely, a server that would be
available 95 percent of the time would have a ρ ratio equal
to 0.0526. We immediately note that a Raft cluster with four
servers offers a much lower availability than a Raft cluster
with five nodes and a barely better availability than a cluster
with three nodes. To understand what causes this relatively
poor performance, let us return to the state transition diagram

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Failure rate to repair rate ratio

Pr
ob

(o
nl
y
tw

o
up

 to
 d
at
e
se
rv
er
s)

RAFT(3)

RAFT(4)

RAFT(5)

Fig. 4. Compared probabilities of accepting updates when only two
participating servers remain available for Raft clusters with three, four and
five servers.

displayed in Fig. 2. In contrast to a Raft cluster with five
servers that tolerates all double failures, a Raft cluster with
four servers will only tolerate the successive failures of any
given servers and the leader of the remaining three servers.

A simple way of comparing the log update durabilities
offered by the three configurations is to estimate the likeli-
hood that they will perform log updates with fewer than three
participating servers. Since none of the three configurations
will perform these updates when only one server remains
present, our comparison will focus on the likelihood that the
three configurations will perform log updates with two
participating servers. As Fig. 3 shows, the comparison is
much more favorable to the Raft cluster with four servers. It
will perform much fewer updates on two servers than a
cluster with three servers and very few of them as long as ρ ≤
0.05.

We can safely conclude that Raft clusters with four
servers present a viable alternative to Raft clusters with five
servers whenever the application requires:

1. The same availability guarantees as those offered by
a Raft cluster with three servers.

2. The same update durability guarantees as those
offered by a Raft cluster with five servers.

V. RAFT CLUSTERS WITH WITNESSES
Another option for reducing the energy footprint of the

Raft algorithm is to replace some of its servers by
lightweight entities that could run on very low-power nodes
such as FAWN nodes [1] or the Raspberry Pi [22].

Witnesses [15] allow that option. They are small entities
that contain enough metadata to participate in all quorums
but hold no data. In our context, it means that a witness will
keep track of the sequence number of the current term and
the indexes of all log updates, but not their contents. In the
same way, it will not have an associated state machine but
will keep track of the epoch number and the index of the last
known update applied by the leader to its state machine.

An important consequence of these limitations is that
witnesses do not hold enough information to act as leaders of
a cluster. To enforce this restriction, we will prevent
witnesses from calling for an election. Witnesses will still
listen to heartbeats from their cluster leader but will not act
upon the discovery of a leader failure.

The main advantage of witnesses is that a cluster
comprising n conventional servers and m witnesses will
provide almost the same cluster availability as a cluster
comprising n + m conventional servers as long as the number
of conventional servers exceeds the number of witnesses. To
understand why these availabilities may differ, let us
consider the case of a Raft cluster with four replicas, respec-
tively identified as A, B, C and D, and a single witness W. To
simplify our notations, let us assume that the state of each
entity can be entirely determined from their current epoch
number e and the index of the last request r they committed.

We start by assuming that all cluster entities are opera-
tional and up to date:

A
eA= 5
rA= 14

B
eB= 5
r

B

BB= 14

C
eC= 5
rC= 14

D
eD= 5
rD= 14

W
eW= 5
rW= 14

Assume now that servers C and D fail. Since three of the
five original entities remain available, the cluster will keep
processing log update requests:

A
eA= 5
rA= 22

B
eB= 5
r

B

BB= 22

[C]
eC= 5
rC= 14

[D]
eD= 5
rD= 14

W
eW= 5
rW= 22

Assume now that servers A and B fail and servers C and
D recover after servers A and B have failed

[A]
eA= 5
rA= 22

[B]
eB= 5
r

B

BB= 22

C
eC= 5
rC= 14

D
eD= 5
rD= 14

W
eW= 5
rW= 22

All attempts to elect a new cluster will fail because
witness W cannot serve as the new leader and cannot vote for
either server C or server D because it cannot vote for any
server whose log is less up to date than its own log record.
This would not have happened if W had been a conventional
Raft server, because it would have then invited servers C
and D to vote for him and they would have accepted. Fortu-
nately for us, this scenario is very rare as long as the
participating entities do not fail too often for long periods of
time.

One drawback of replacing conventional Raft servers by
witnesses is that it allows updates to be applied to fewer
servers than before. Returning to the case of our cluster with
four conventional servers and a single witness, we observe
that valid update quorums can now consist of two servers
and one witness while any update quorum for a Raft cluster
with five servers will necessarily involve three of the five
servers.

Replacing two of the five servers by witnesses has an
even more drastic impact on the durability of log updates as
a valid update quorum can now consist of the two witnesses
and a single replica.

We analyzed the performances of Raft cluster configura-
tions respectively consisting of three servers and two
witnesses and four servers and a single witness using the
same techniques we used for the case of a Raft cluster with
four servers. The necessity to handle situations where the
cluster remained unavailable when witnesses were up to date
but the only available servers were not up to date resulted in
two fairly complex state transition diagrams. For instance,
the state transition diagram for a cluster consisting of three
conventional Raft servers and two witnesses comprised 38
distinct states. In contrast, the state diagram for a cluster with
four replicas and one witness only had 32 distinct states with
11 of these states corresponding to states where two of the
five entities are operational. Space considerations prevent us
from discussing here these two diagrams. We will instead
refer the interested reader to a previous paper where we
describe in some detail a simpler configuration consisting of
two file replicas and one witness [15].

We avoided the tedious process of computing algebraic
solutions of the two systems of equations corresponding to
these two configurations by using the Maxima symbolic
algebra package [12]. Most of our results were quotients of
polynomials of degree 10 to 17 in ρ.

Fig. 5 compares the availabilities offered by the two new
configurations with witnesses with those offered by Raft
configurations with three or five servers. As we can see, the
availabilities offered by the configuration with four servers
and one witness (RAFT(4+1)) are practically undistinguish-
able from those offered by a configuration with five servers.
In addition, the availabilities offered by the configuration
with three servers and two witnesses (RAFT(3+2)) remain
fairly close to these values as long as ρ ≤ 0.05, which will
hold as long as individual servers remain up 95 percent of
the time. In other words, replacing one or two of the five
servers of a Raft cluster by witnesses will have no significant
impact on the service availability as long as its individual
components remain operational most of the time.

The same is not true for the durability of the log updates.
As Fig. 6 shows, the configuration with four servers and one
witness still provides much better guarantees of durability
than a configuration with three servers because much fewer
log updates will be recorded on two servers. Conversely, the
configuration with three servers and two witnesses offer
lesser guarantees of durability than a configuration with
three servers because an equal fraction of log updates will
be recorded on only two of the three servers and, as Fig. 7
shows, a small but significant fraction of log updates will be
recorded on a single server.

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Failure rate to repair rate ratio

A
va
la
bi
lit
y

RAFT(5)

RAFT(4+1)

RAFT(3+2)

RAFT(3)

Fig. 5. Compared availabilities of Raft clusters with and without witnesses.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Failure rate to repair rate ratio

Pr
ob

(t
w
o
up

 to
 d
at
e
se
rv
er
s) RAFT(3+2)

RAFT(3)
RAFT(4+1)

RAFT(5)

Fig. 6. Compared probabilities of accepting updates when only two servers
remain available for Raft clusters with and without witnesses.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Failure rate to repair rate ratio

Pr
ob

(o
nl
y
on

e
up

 t
o
da

te
 s
er
ve
rs
)

RAFT(3+2)

ALL OTHERS

Fig. 7. Compared probabilities of accepting updates when only one server
remains available for Raft clusters with and without witnesses.

VI. CONCLUSION
While the Raft consensus algorithm is both easier to

understand and more straightforward to implement than the
older Paxos algorithm, it requires five servers to ensure both
the availability and the durability of its log updates.

We have proposed two methods for reducing this huge
energy footprint. Our first solution consists of adjusting Raft
quorums in a way that would allow updates to proceed with
as little as two servers while requiring a larger quorum for
electing a new leader. Our Markov analysis showed that our
solution offered a much better protection against data loss
than a Raft cluster with three servers and much less impres-
sive improvements of the service durability.

Our second proposal consists of replacing one or two of
the five Raft servers with witnesses, that is, lightweight
servers that maintain the same metadata as other servers but
hold no data and can therefore run on very low-power hosts.
Our Markov analyses showed that these substitutions have
little impact on the cluster availability and no significant
impact on the risks of incurring a data loss for the configura-
tion consisting of four replicas and a witness and a a much
higher risk of data losses for the configuration consisting of
three replicas and two witnesses. In other words, teams
wishing to implement a highly available version of the Raft
protocol should not hesitate to replace one of its four servers
by a witness, thus saving nearly 20 percent of its energy
footprint. While savings of up to 40 percent could be
achieved by replacing two of the five replicas by witnesses,
this solution should only be considered when the durability
of log updates is less important.

Two potential avenues for further work are replacing
Raft static voting protocol by a dynamic voting protocol [5]
and allowing failed witnesses to be promptly regenerated on
spare sites [16].

REFERENCES
[1] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan and

V. Vasudevan, “FAWN: A fast array of wimpy nodes,” Proc. 22nd ACM
Symposium on Operating System Principles, Big Sky, MT, pp. 1–14,
Oct. 2009.

[2] Brian Beach, “How long do disks last?”
https://www.backblaze.com/blog/how-long-do-disk-drives-last/,
retrieved March 25, 2015.

[3] M. Burrows,“The Chubby lock service for loosely-coupled distributed
systems.” Proc. 7th Symposium on Operating systems Design and
Implementation (OSDI '06), Seattle, WA, pp. 335–350, Nov. 2006.

[4] T. D. Chandra, R. Griesemer, J. Redstone,Paxos made live: an
engineering perspective,” Proc. 26th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing (PODC ’07),
Portland, OR, pp. 398–407, Aug. 2007.

[5] D. Davcev and W.A. Burkhard, “Consistency and recovery control for
replicated files.” Proc. 10th ACM Symposium on Operating System
Principles, (1985) pp. 87–96.

[6] H. Howard, M. Schwarzkopf, A. Madhavapeddy, J. Crowcroft, “Raft
refloated: do we have consensus?” ACM SIGOPS Operating Systems
Review: Special Issue on Repeatability and Sharing of Experimental
Artifacts, 49(1):12–21 , Jan.2015

[7] L. Lamport, “Time, clocks and the ordering of events in a distributed
system,” Communications of the ACM, 21(7): 58–65, July 1978.

[8] L. Lamport, R. Shostak, M. Pease, “The Byzantine generals problem,”
ACM Transactions on Programming Languages and Systems 4(3):
382–401, July 1982.

[9] L. Lamport, “Using time instead of timeout for fault-tolerant
distributed systems. ACM Transactions on Programming Languages
and Systems, 6(2):254–280, Apr. 1984.

[10] L. Lamport, “The part-time parliament,” ACM Transactions on
Computer Systems, 16(2):133–169, May 1998.

[11] L. Lamport, “Paxos made simple,” ACM SIGACT News,32(4):18–25,
Dec. 2001.

[12] Maxima, a Computer Algebra System, http://maxima.sourceforge.net/,
retrieved March 28, 2015.

[13] D. Ongaro, J. Ousterhout, “In search of an understandable consensus
algorithm” (Extended Version). Tech Report. May, 2014.
http://ramcloud.stanford.edu/Raft.pdf

[14] D. Ongaro, J. Ousterhout, In search of an understandable consensus
algorithm. Proc. 2014 USENIX Annual Technical Conference (ATC
‘14), Philadelphia, PA, pp. 305–319, June 2014.

[15] J.-F. Pâris, Voting with witnesses: a consistency scheme for replicated
files, Proc. 6th International Conference on Distributed Computing
Systems (DCS ’86), Cambridge, MA, pp. 606–612, May 1986.

[16] C. Pu, J. D. Noe, A. Proudfoot, “Regeneration of replicated objects: A
technique and Its Eden implementation,” Proc. 2 International
Conference on Data Engineering (ICDE ’86), Los Angeles, CA,
pp.175

nd

–187, Feb. 1986
[17] R. D. Schlichting, F. B. Schneider, “Fail-stop processors: an approach

to designing fault-tolerant computing systems,” ACM Transactions on
Computer Systems 1(3):222–238, Aug. 1983

[18] F. B. Schneider. “Implementing fault-tolerant services using the state
machine approach: A tutorial.” ACM Computing Surveys, 22(4):299–
319, Dec. 1990.

[19] J. Seguin, G. Sergeant, and P. Wilms, “A majority consensus
algorithm for the consistency of duplicated and distributed
information,” Proc. First International Conference on Distributed
Computing Systems, Huntsville, AL, pp. 617–624, Oct. 1979.

[20] M. W. Storer, K. Greenan, E. L. Miller, K. Voruganti, “Pergamum:
Replacing tape with energy efficient, reliable, disk-based archival
storage,” Proc. 6 USENIX Conference on File and Storage
Technologies (FAST 2008),San Jose, CA, pp. 1

th

–6, Feb. 2008.
[21] R. H. Thomas, “A majority consensus approach to concurrency

control, ACM Transactions on Database Systems,” 4(2):180–209,
June 1979.

[22] E. Upton, G. Halfacree, Raspberry Pi User Guide, Wiley, Sep. 2014

View publication stats

https://www.researchgate.net/publication/280091830

