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Abstract—The Raft consensus algorithm is a new distrib-
uted consensus algorithm that is both easier to understand and 
more straightforward to implement than the older Paxos algo-
rithm. Its major limitation is its high energy footprint. As it 
relies on majority consensus voting for deciding when to 
commit an update, Raft requires five participants to protect 
against two simultaneous failures. We propose two methods for 
reducing this huge energy footprint. Our first proposal consists 
of adjusting Raft quorums in a way that would allow updates 
to proceed with as few as two servers while requiring a larger 
quorum for electing a new leader. Our second proposal 
consists of replacing one or two of the five Raft servers with 
witnesses, that is, lightweight servers that maintain the same 
metadata as other servers but hold no data and can therefore 
run on very low-power hosts. We show that these substitutions 
have little impact on the cluster availability but very different 
impacts on the risks of incurring a data loss. 

Keywords-Distributed computing; Fault-tolerant computing; 
Green computing; Distributed consensus; Paxos; Raft algorithm 

 

I. INTRODUCTION 
Distributed consensus algorithms allow multiple partici-

pants in a distributed system to agree on the values of some 
replicated data. They are essential to the development of 
fault-tolerant services because they allow multiple servers to 
act as one. They are also notoriously complex because they 
have to handle both server crashes and all kinds of 
communication failures.1

We can distinguish two main classes of consensus algo-
rithms depending on the kinds of faults they tolerate. 
Byzantine consensus algorithms assume that faulty compo-
nents of a distributed system could send incorrect, 
inconsistent messages to their peers [8]. Other consensus 
algorithms assume that the system components will either 
operate correctly or stop operating. In other words, they will 
only experience fail-stop failures [17]. The best known non-
Byzantine consensus algorithm is Leslie Lamport’s Paxos 
algorithm [10, 11]. Paxos offers the two advantages of 
having been proved to be correct and being efficient in the 
standard case. At the same time, it is both hard to understand 
and difficult to implement [14]. Consider for instance the 
Chubby lock service [3, 4]. It was designed to provide 
coarse-grained locking for loosely-coupled distributed 

                                                           
1 Supported in part by the National Science Foundation under awards CCF-
1219163 and CCF-1217648, by the Department of Energy under award 
DE-FC02-10ER26017/DE-SC0005417 as well as by the industrial 
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systems and offer limited amount of reliable storage. Its first 
version [3] relied on a third-party fault-tolerant database that 
had known replication-related bugs. It was later decided to 
replace this version with a locally developed solution that 
would use the Paxos algorithm [4]. Reporting on their 
experience, its authors mention that “[t]here are significant 
gaps between the description of the Paxos algorithm and the 
needs of a real-world system.” 

Ongaro and Ousterhout recently proposed the Raft 
consensus algorithm to overcome these limitations [13, 14]. 
As noted by Howard et al., Raft is easier to understand and 
easier to implement than Paxos [6]. A remaining limitation 
of Raft is the large number of servers it requires. Because it 
uses majority consensus voting for deciding when to commit 
an update, Raft requires 2n + 1 participants to protect against 
n simultaneous failures. As a result, most Raft clusters use 
five servers in order to be able to tolerate two failures. In 
other words, a single Raft cluster has the same power 
requirements as five non-replicated servers. These require-
ments are likely to remain acceptable as long as Raft 
supports lightweight services that can run on low-power 
nodes comprising an energy-efficient processor and no hard 
disk. This is much less true when applications require full-
fledged servers. 

We propose to address this issue by investigating the 
possibility of implementing Raft on clusters with fewer than 
five full-fledged servers. We note that failures that affect the 
durability of the data stored on a Raft cluster are much less 
frequent than those that affect the availability of the service 
it implements. We then introduce solutions that address 
separately these two issues. Our first proposal consists of 
adjusting Raft quorums in a way that would allow updates 
to proceed with as little as two servers while requiring a 
larger quorum for electing a new leader. So, a Raft cluster 
with four nodes, an update quorum of two and a leader election 
quorum of three would offer good protection against data loss 
while remaining slightly more available than a conventional 
Raft with three nodes. Our second proposal consists of 
replacing one or two of the five servers with witnesses [15]. 
In this context, these witnesses will be lightweight Raft 
servers that maintain the same metadata as other servers but 
hold no data. As a result, they can run on very low-power 
hosts such as the Raspberry Pi [22]. We show that both 
configurations provide similar cluster availabilities as a Raft 
cluster with five full servers and very good to adequate 
protection against data loss depending on the number of 
servers replaced by witnesses.  
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Fig. 1. The Raft architecture (after [OO14]). 

The remainder of this paper is organized as follows. 
Section II reviews the main features of the Raft algorithm.  
Section III presents our overall approach for reducing its 
energy footprint. Section IV introduces our Raft cluster with 
four servers and evaluates its robustness in terms of system 
availability and risk of data losses. Section V does the same 
for RAFT configurations including witnesses. Finally, 
Section VI has our conclusions. 

II. THE RAFT ALGORITHM 
In this section, we present the salient features of the Raft 

algorithm focusing on its update algorithm and the protocol 
it uses for handling leader failures.  

A. Overview 
Ongaro and Ousterhout designed the Raft algorithm to 

run on clusters consisting of at least three servers, like the 
one in Fig. 1. Each of its component servers includes a log, 
a consensus module and a state machine. Raft guarantees 
that, at any time, a majority of these state machines will 
remain in agreement. In other words, each Raft cluster 
implements a replicated state machine [9, 18]. 

Raft uses a strong leader model where each cluster has a 
single leader that manages the whole cluster and other 
servers are mere followers. As a result, the cluster leader is 
solely habilitated to receive requests from clients, forward 
them to its followers and decide when they can be safely 
applied to everyone’s state machines. 

Leaders maintain their leadership status by sending 
periodic heartbeats to their followers. Any follower that 
stops receiving these heartbeats will call for an election and 
propose itself as the new leader. 

Raft partitions time into terms of arbitrary length that are 
identified by consecutive sequence numbers. A new term 
starts each time a server calls for an election. It will either 
end if the election results in a split vote or continue as long 
as the newly elected leader maintains its leadership status. 
Terms play in Raft the role of a logical clock [7] and allow 
servers to detect obsolete information, such as requests from 
a stale leader. All communications between servers include 
the sequence number of the current term. 

B. Normal operation 
When a leader receives a request from a client, it 

appends it to its log, gives it a sequence number within the 
current epoch and forwards it to its followers through an 

AppendEntry remote procedure call. All followers that have 
up-to-date logs append the new command to their logs and 
notify the leader of that fact. Whenever the leader notices 
that some followers did not reply, it resends the command 
and repeats the process until all followers have acknowl-
edged the request. 

As soon as the leader has replicated the log entry on a 
majority of the servers, it commits it and applies it to its own 
state machine. This action also applies to all preceding 
entries in the leader’s log, including entries created by a 
former leader in a previous epoch. Commit decisions are 
propagated to other servers by including the index of the last 
committed update in all future messages sent by the leader, 
including AppendEntry calls and heartbeats. 

C. Handling leader failures 
Raft uses a timeout mechanism for detecting leader fail-

ures: any follower that has not received a message from its 
leader in a given amount of time will call for an election, 
announce its candidacy for the cluster leadership position 
and vote for itself. A main problem with this solution is that 
split votes will occur whenever two followers call elections 
at the same time. Raft reduces, but does not completely 
eliminate this risk, by using randomized election timeouts.  

When a former follower becomes a candidate for the 
cluster leadership position, it sends a message containing a 
summary of the state of its log to all other servers. Servers 
receiving that message will vote for the candidate unless any 
of following three conditions holds: 

1. They believe they still have a leader, 
2. They have already voted for another candidate, or 
3. Their own log is more “up to date” than the candi-

date’s log.  
The last restriction ensures that candidate cannot collect 

a majority of the votes unless its log contains all committed 
updates. 

The newly elected candidate will require all its followers 
to duplicate in their logs the contents of its own log. To 
achieve that, it will resend to each of its followers all its log 
entries starting from the last entry for which both servers 
agree. 

D. Cluster membership changes 
RAFT handles cluster membership changes by requiring 

the change to involve both a majority of the servers in the 
old cluster and a majority of the servers in the new cluster. 

III. REDUCING RAFT ENERGY FOOTPRINT 
The major motivation for having five servers in a Raft 

cluster is to allow the cluster to tolerate two simultaneous 
failures. This property holds because a Raft cluster with five 
servers will accept updates from it clients as long as three of 
its servers can participate in an update quorum and will 
never commit updates to fewer than three servers.  



Requiring five servers in each Raft cluster is likely to 
remain acceptable as long as Raft supports lightweight 
services that can run on low-power architectures built 
around an energy-efficient processor, a small amount of 
memory and a flash drive replacing the hard disk. Exem-
plars of these architectures include Pergamum tomes, but 
without their attached disk, [20], FAWN nodes [1] and the 
Raspberry Pi [22]. This is much less true when applications 
require full-fledged servers that have a non-negligible 
energy footprint. 

We propose to reduce this emerging footprint by running 
Raft on configurations with fewer conventional servers.  At 
present, we do not want to alter in any way the logic of the 
Raft algorithm, which excludes the use of dynamic voting 
algorithms [5]. 

We define the availability of a Raft cluster as the fraction 
of time it will be able to process user requests and the 
durability of its log updates by the probability it will never 
lose any committed update. Typical Raft clusters satisfy 
these requirements by guaranteeing that:  

1. The cluster will remain available as long as three of 
its five servers remain available, and 

2. All log updates will always apply to at least three 
logs. 

We believe that this second requirement is excessive. 
First, disk failures are much less frequent than server 
crashes. Even assuming a disk failure rate of 11.8 percent 
per year, which is typical for consumer disk drives at the 
very end of their useful lifetime [2], disk mean times to 
failure would remain close to eight years and a half and an 
individual disk would have a 99.97 percent probability of 
not failing over a 24-hour interval. This is to say that we 
may let a cluster occasionally run with a single server as 
long as it happens infrequently and for short time intervals. 

When stronger durability guarantees are required, 
running the cluster with at least two operational servers 
should be enough. While irrecoverable read errors are still a 
possibility, their impact should remain negligible as long as 
the size of the log and its state machine are less than a few 
hundred megabytes. 

The solutions we propose are tailored to three different 
scenarios with different demands on cluster availability and 
log update durability: 

1. When log update durability is more important than 
cluster availability, a Raft cluster with four servers 
will offer both a much better update durability and a 
higher data availability than a Raft cluster with three 
servers. 

2. When log update durability and cluster availability, 
are equally important, a Raft cluster with four servers 
and one witness will offer nearly the same 
availability than a Raft cluster with five servers and 
almost as strong guarantees on update durability.  
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Fig. 2. A Raft cluster with four servers, an update quorum of two and an 
election quorum of three. 

3. When cluster availability is more important than 
update durability, a Raft cluster with three servers 
and two witnesses will provide nearly the same 
availability than a Raft cluster with five servers but 
have much weaker guarantees on update durability.  

IV. RAFT CLUSTERS WITH FOUR SERVERS 
The correctness of the Raft algorithm requires that its 

update quorum and its leader election quorum intersect in 
order to ensure that the new leader will always have the 
most up-to-date version of the update log and its associated 
state machine. The algorithm satisfies this condition by 
using majority consensus voting [19, 21]. Using distinct 
quorums would not affect the correctness of the algorithm as 
long as: 

1. The update quorum and the leader election quorum 
intersect. 

2. The leader election quorum remains greater than or 
equal to the update quorum. 

Consider now a Raft cluster with four nodes, an update 
quorum of two and a leader election quorum of three. It 
would guarantee that all updates will always be applied to at 
least two servers and require three servers to recover from 
the loss of a leader. The main advantage of this scheme is 
that most updates will be applied to all servers. A smaller 
fraction of the updates will be applied to three of the four 
servers and even fewer updates applied to two of the four 
servers. Hence, the cluster will have a significantly lower 
risk of a data loss than a Raft cluster with three clusters. 

The behavior of our four-server scheme can be described 
by its state transition diagram. As Fig. 2 shows, the cluster 
has six possible states.  State <4> is the original state where 
all four servers are available. A failure of one of the servers 
would bring the cluster to state <3>.  We note three distinct 
transitions from this state: 

1. A recovery transition corresponds to a repair of the 
server that crashed and returns the cluster to state 
<4>. 

2. A failure of one of the two followers of the current 
leader of the cluster will bring the cluster to state 



<2>. Note that the cluster will still be able to accept 
log updates since it still satisfies the update quorum 
of the cluster. 

3. A failure of the current leader of the cluster will bring 
the cluster to state <2'>. Note that the cluster will 
then be both unable to accept log updates because it 
lacks a leader and unable to elect a new leader 
because that would require three servers. 

Both states <2> and <2'> have similar failure transitions 
to state <1'> and recovery transitions to state <3>. State 
<1'> corresponds to the state of the cluster when only one 
server remains available and the system cannot accept any 
update. The state has a failure transition to state <0'> and a 
recovery transition to state <2'>. Finally, state <0'> has a 
recovery transition to state <1'>. 

To derive the cluster availability, we need to make a few 
additional assumptions. We will model our cluster as a set 
of servers with independent failure modes. Whenever a 
server fails, a repair process is immediately initiated for that 
server. Should several servers fail, this repair process will be 
performed in parallel on those servers. We assume that 
server failures are independent events and are exponentially 
distributed with mean λ. In addition, we require repairs to 
be exponentially distributed with mean μ. Both hypotheses 
are necessary to represent our system by a Markov process 
with a finite number of states. 

The equilibrium conditions for our system are: 
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where pi is the probability of the cluster being in state <i>, 
with the additional condition: 

.  1'0'1'2234 =+++++ pppppp

Solving the system of linear equations and substituting 
μ

λρ = we obtain: 

1. The availability of the cluster A4(ρ) 
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2. The probability P4,2(ρ) that the cluster will accept 
updates with only two of the four servers available: 
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Fig. 3. Compared availabilities of Raft clusters with three, four and five 
servers. 

Deriving the same values for conventional Raft clusters 
with respectively three and five servers is a much easier task 
because both clusters require a majority of their servers to 
be available in order to perform both log updates and leader 
election quorums. Observing that the availability of a single 
server A is 
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for a Raft cluster with three servers, and 
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Fig. 3 displays the availabilities offered by the three 
configurations for values of the failure rate-to-repair rate 
ratio ρ. A zero value indicates a server that would never 
crash and a 0.20 value a server that would be available 83.3 
percent of the time. Conversely, a server that would be 
available 95 percent of the time would have a ρ ratio equal 
to 0.0526. We immediately note that a Raft cluster with four 
servers offers a much lower availability than a Raft cluster 
with five nodes and a barely better availability than a cluster 
with three nodes. To understand what causes this relatively 
poor performance, let us return to the state transition diagram 
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Fig. 4. Compared probabilities of accepting updates when only two 
participating servers remain available for Raft clusters with three, four and 
five servers. 

displayed in Fig. 2. In contrast to a Raft cluster with five 
servers that tolerates all double failures, a Raft cluster with 
four servers will only tolerate the successive failures of any 
given servers and the leader of the remaining three servers. 

A simple way of comparing the log update durabilities 
offered by the three configurations is to estimate the likeli-
hood that they will perform log updates with fewer than three 
participating servers. Since none of the three configurations 
will perform these updates when only one server remains 
present, our comparison will focus on the likelihood that the 
three configurations will perform log updates with two 
participating servers. As Fig. 3 shows, the comparison is 
much more favorable to the Raft cluster with four servers. It 
will perform much fewer updates on two servers than a 
cluster with three servers and very few of them as long as ρ ≤ 
0.05. 

We can safely conclude that Raft clusters with four 
servers present a viable alternative to Raft clusters with five 
servers whenever the application requires: 

1. The same availability guarantees as those offered by 
a Raft cluster with three servers. 

2. The same update durability guarantees as those 
offered by a Raft cluster with five servers. 

V. RAFT CLUSTERS WITH WITNESSES 
Another option for reducing the energy footprint of the 

Raft algorithm is to replace some of its servers by 
lightweight entities that could run on very low-power nodes 
such as FAWN nodes [1] or the Raspberry Pi [22].  

Witnesses [15] allow that option. They are small entities 
that contain enough metadata to participate in all quorums 
but hold no data. In our context, it means that a witness will 
keep track of the sequence number of the current term and 
the indexes of all log updates, but not their contents. In the 
same way, it will not have an associated state machine but 
will keep track of the epoch number and the index of the last 
known update applied by the leader to its state machine. 

An important consequence of these limitations is that 
witnesses do not hold enough information to act as leaders of 
a cluster. To enforce this restriction, we will prevent 
witnesses from calling for an election. Witnesses will still 
listen to heartbeats from their cluster leader but will not act 
upon the discovery of a leader failure. 

The main advantage of witnesses is that a cluster 
comprising n conventional servers and m witnesses will 
provide almost the same cluster availability as a cluster 
comprising n + m conventional servers as long as the number 
of conventional servers exceeds the number of witnesses. To 
understand why these availabilities may differ, let us 
consider the case of a Raft cluster with four replicas, respec-
tively identified as A, B, C and D, and a single witness W. To 
simplify our notations, let us assume that the state of each 
entity can be entirely determined from their current epoch 
number e and the index of the last request r they committed. 

We start by assuming that all cluster entities are opera-
tional and up to date: 

A 
eA= 5 
rA= 14 

B 
eB= 5 
r

B

BB= 14 

C 
eC= 5 
rC= 14 

D 
eD= 5 
rD= 14 

W 
eW= 5 
rW= 14 

Assume now that servers C and D fail. Since three of the 
five original entities remain available, the cluster will keep 
processing log update requests: 

A 
eA= 5 
rA= 22 

B 
eB= 5 
r

B

BB= 22 

[C] 
eC= 5 
rC= 14 

[D] 
eD= 5 
rD= 14 

W 
eW= 5 
rW= 22 

Assume now that servers A and B fail and servers C and 
D recover after servers A and B have failed 

[A] 
eA= 5 
rA= 22 

[B] 
eB= 5 
r

B

BB= 22 

C 
eC= 5 
rC= 14 

D 
eD= 5 
rD= 14 

W 
eW= 5 
rW= 22 

All attempts to elect a new cluster will fail because 
witness W cannot serve as the new leader and cannot vote for 
either server C or server D because it cannot vote for any 
server whose log is less up to date than its own log record. 
This would not have happened if W had been a conventional 
Raft server, because it would have then invited servers C 
and D to vote for him and they would have accepted. Fortu-
nately for us, this scenario is very rare as long as the 
participating entities do not fail too often for long periods of 
time. 

One drawback of replacing conventional Raft servers by 
witnesses is that it allows updates to be applied to fewer 
servers than before. Returning to the case of our cluster with 
four conventional servers and a single witness, we observe 
that valid update quorums can now consist of two servers 
and one witness while any update quorum for a Raft cluster 
with five servers will necessarily involve three of the five 
servers. 



Replacing two of the five servers by witnesses has an 
even more drastic impact on the durability of log updates as 
a valid update quorum can now consist of the two witnesses 
and a single replica. 

We analyzed the performances of Raft cluster configura-
tions respectively consisting of three servers and two 
witnesses and four servers and a single witness using the 
same techniques we used for the case of a Raft cluster with 
four servers. The necessity to handle situations where the 
cluster remained unavailable when witnesses were up to date 
but the only available servers were not up to date resulted in 
two fairly complex state transition diagrams. For instance, 
the state transition diagram for a cluster consisting of three 
conventional Raft servers and two witnesses comprised 38 
distinct states. In contrast, the state diagram for a cluster with 
four replicas and one witness only had 32 distinct states with 
11 of these states corresponding to states where two of the 
five entities are operational. Space considerations prevent us 
from discussing here these two diagrams. We will instead 
refer the interested reader to a previous paper where we 
describe in some detail a simpler configuration consisting of 
two file replicas and one witness [15]. 

We avoided the tedious process of computing algebraic 
solutions of the two systems of equations corresponding to 
these two configurations by using the Maxima symbolic 
algebra package [12]. Most of our results were quotients of 
polynomials of degree 10 to 17 in ρ. 

Fig. 5 compares the availabilities offered by the two new 
configurations with witnesses with those offered by Raft 
configurations with three or five servers. As we can see, the 
availabilities offered by the configuration with four servers 
and one witness (RAFT(4+1)) are practically undistinguish-
able from those offered by a configuration with five servers. 
In addition, the availabilities offered by the configuration 
with three servers and two witnesses (RAFT(3+2)) remain 
fairly close to these values as long as ρ ≤ 0.05, which will 
hold as long as individual servers remain up 95 percent of 
the time. In other words, replacing one or two of the five 
servers of a Raft cluster by witnesses will have no significant 
impact on the service availability as long as its individual 
components remain operational most of the time. 

The same is not true for the durability of the log updates.  
As Fig. 6 shows, the configuration with four servers and one 
witness still provides much better guarantees of durability 
than a configuration with three servers because much fewer 
log updates will be recorded on two servers. Conversely, the 
configuration with three servers and two witnesses offer 
lesser guarantees of durability than a configuration with 
three servers because an equal fraction of log updates will 
be recorded on only two of the three servers and, as Fig. 7 
shows, a small but significant fraction of log updates will be 
recorded on a single server. 
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Fig. 5. Compared availabilities of Raft clusters with and without witnesses. 
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VI. CONCLUSION 
While the Raft consensus algorithm is both easier to 

understand and more straightforward to implement than the 
older Paxos algorithm, it requires five servers to ensure both 
the availability and the durability of its log updates. 

We have proposed two methods for reducing this huge 
energy footprint. Our first solution consists of adjusting Raft 
quorums in a way that would allow updates to proceed with 
as little as two servers while requiring a larger quorum for 
electing a new leader. Our Markov analysis showed that our 
solution offered a much better protection against data loss 
than a Raft cluster with three servers and much less impres-
sive improvements of the service durability. 

Our second proposal consists of replacing one or two of 
the five Raft servers with witnesses, that is, lightweight 
servers that maintain the same metadata as other servers but 
hold no data and can therefore run on very low-power hosts. 
Our Markov analyses showed that these substitutions have 
little impact on the cluster availability and no significant 
impact on the risks of incurring a data loss for the configura-
tion consisting of four replicas and a witness and a a much 
higher risk of data losses for the configuration consisting of 
three replicas and two  witnesses. In other words, teams 
wishing to implement a highly available version of the Raft 
protocol should not hesitate to replace one of its four servers 
by a witness, thus saving nearly 20 percent of its energy 
footprint.  While savings of up to 40 percent could be 
achieved by replacing two of the five replicas by witnesses, 
this solution should only be considered when the durability 
of log updates is less important. 

Two potential avenues for further work are replacing 
Raft static voting protocol by a dynamic voting protocol [5] 
and allowing failed witnesses to be promptly regenerated on 
spare sites [16]. 
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