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1 A Docker Container Anomaly Monitoring System
2 Based on Optimized Isolation Forest
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4 Dan Feng,Member, IEEE, and Darrell Long, Fellow, IEEE

5 Abstract—Container-based virtualization has gradually become a main solution in today‘s cloud computing environments. Detecting

6 and analyzing anomaly in containers present a major challenge for cloud vendors and users. This paper proposes an online container

7 anomaly detection system by monitoring and analyzing multidimensional resource metrics of the containers based on the optimized

8 isolation forest algorithm. To improve the detection accuracy, it assigns each resource metric a weight and changes the random feature

9 selection in the isolation forest algorithm to the weighted feature selection according to the resource bias of the container. In addition,

10 it can identify abnormal resource metrics and automatically adjust the monitoring period to reduce the monitoring delay and system

11 overhead. Moreover, it can locate the cause of the anomalies via analyzing and exploring the container log. The experimental results

12 demonstrate the performance and efficiency of the system on detecting the typical anomalies in containers in both simulated and real

13 cloud environments.

14 Index Terms—Docker container, anomaly monitoring, isolation forest, log analysis

Ç

15 1 INTRODUCTION

16 WITH the popularity of cloud computing platforms,
17 more and more enterprises have their own data cen-
18 ters, providing services to customers with different needs.
19 One of the key technologies in the data center is virtualiza-
20 tion. The docker container [1], as a new virtualization tech-
21 nology, has many attractive advantages such as easy to
22 deploy and fast start-up. Thus it has quickly become the
23 darling of major companies (e.g., Amazon [2], IBM [3] and
24 Oracle [4]).
25 However, with the increasingly large-scale application of
26 container clusters, the issue of container security and stabil-
27 ity has also drawn an increasing attention. For instance, the
28 collapse of Amazon Cloud that builds upon container and
29 virtual machine cluster led to invalidation of thousands of
30 websites and apps [5]. Therefore, it is crucial to detect
31 abnormalities in the container in a timely manner to ensure
32 the service quality of the cloud.
33 As the containers continue to rise and fall, one of the chal-
34 lenges is how to monitor multiple resources at the same time
35 in a dynamic environment with a low overhead. Rule-based
36 methods [6], [7], [8] detect abnormalities by setting a

37threshold for each metric. They assume that only one con-
38tainer is running on the host at the beginning, and set a fixed
39threshold for each resource metric of the container. When
40another container is created with a resource priority, the
41original resource threshold of the first container is adjusted
42according to the resource usage of the second container. This
43adjustment becomes impractical when there exist numerous
44and dynamically changing containers. The statistics-based
45method [9] assumes that the data obeys some standard
46distribution models and finds outliers that deviate from the
47distribution. Since most models are based on univariate
48assumptions, they are not applicable to multidimensional
49data. In order to solve the above-mentioned problems, the
50academic community has proposed a density-based method
51such as Local Outlier Factor (LOF) [10] and Angle-Based
52Outlier Detection (ABOD) [11]. They identify outliers by esti-
53mating the density of local data or calculating the angle
54change. However, they both incur a large computation over-
55headwhen the sample data size is large.
56The existingmonitoring systems (e.g., Ganglia [6], Nagios
57[8], Akshay [12], cAdviosr [13]) generally adopt a fixedmoni-
58toring period to query the abnormality of the system. When
59the monitoring period is very small, the monitoring system
60can quickly locate abnormalities. However, this results in a
61huge system overhead when there are too many monitoring
62objects. When the monitoring period is large, the monitoring
63delay will also increase. Thus, it is necessary to adopt a
64proper monitoring period according to the system running
65state.
66When an exception occurs in a container, it usually causes
67a change in the resource usage of the container. For example,
68an endless loop in a running program can eat all the CPU
69resource, and a memory leak will cause the memory usage
70to become higher. Therefore, it is necessary to identify the
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71 anomaly by monitoring the container resource metrics. This
72 paper proposes a container anomaly monitoring system
73 based on optimized isolation forest. The system first obtains
74 each resource usage rate of each container on the host
75 machine in a non-intrusive manner. When enough monitor-
76 ing data is collected, the anomaly value of each monitoring
77 data is calculated by using the optimized isolation forest,
78 which takes into account the characteristics of container
79 application workload. Specifically, the system assigns each
80 resource metric a weight. If a container application heavily
81 relies on a resource metric (e.g., IO intensive application
82 relies on disk read/write rate more than network band-
83 width), the system will assign a large value to this resource
84 metric. Correspondingly, we change the random feature
85 selection to weighted feature selection when choosing a fea-
86 ture of the data to divide the data set in the isolation forest
87 algorithm. Thus, if a resource metric with a large weight is in
88 an abnormal state, it will be more easily to be chosen as the
89 feature to divide the data set. Therefore, the anomaly can be
90 more accurately identified. When the anomaly value of a
91 monitored data exceeds a predefined threshold, an anomaly
92 is determined. Then, the system identifies the cause of the
93 anomaly through analyzing the logs of the container. At the
94 same time, the system can increase or decrease the monitor-
95 ing period according to the degree of anomalies. Thus it can
96 significantly reduce the alarm delay andmonitor overheads.
97 The contributions of this paper are as follows:

98 � We design a docker container anomaly monitoring
99 system that can monitor multidimensional resource

100 metric, automatically adjust the monitoring period,
101 and analyze the cause of the anomalies.
102 � We propose an optimized isolation forest algorithm
103 that setsweights for different resourcemetrics and can
104 locate the anomalous resource metric by taking into
105 account the type of container applicationworkload.
106 � We have implemented both the system and algo-
107 rithm and evaluated them in both simulated and real
108 commercial cloud (AWS) environments on a wide
109 variety of anomaly cases in terms of detection accu-
110 racy, monitoring delay and log analysis.

111 2 BACKGROUND AND RELATED WORK

112 In this Section, we first describe the background technolo-
113 gies on Docker and isolation forest. Then we elaborate the
114 related work on the monitoring system and anomaly detec-
115 tion methods.

116 2.1 Docker Technology

117 Docker is a lightweight virtualization solution that is essen-
118 tially a process on the host machine. Docker implements
119 resource isolation through kernel-level namespaces. It allows
120 process communications between hosts and containers with-
121 out interfering with each other. Compared with virtual
122 machines, Docker has the following advantages:
123 First, Docker has higher performance and efficiency than
124 traditional virtualization methods. Unlike hardware-layer
125 virtualization of virtual machines, Docker does not have
126 hardware emulation, and implements virtualization at the
127 operating system level [14].

128Second, Docker has fewer layers of abstraction and does
129not require an additional Operating System (OS) and hyper-
130visor support [15]. Thanks to this, Docker has better resource
131utilization. Typically, there can be thousands of Docker con-
132tainers running on a single machine which can hold only a
133small number of virtual machines. Because of Docker’s light-
134weight, the startup time only needs a few seconds, far faster
135comparedwith several minutes that a virtual machine needs.
136Third, Docker can run on almost any platform, which
137makes Docker have better mobility and scalability [16]. In
138addition, it is easy to deploy and maintenance.
139Due to the advantages of Docker over traditional virtual
140machines, more and more researchers begin to use Docker
141instead of virtual machines [16], [17], [18], [19]. For instance,
142Tihfon et al. [16] implemented the multi-task PaaS (Platform
143as a Service) cloud infrastructure with Docker, and they
144achieved rapid deployment of applications, application
145optimization and isolation. Nguyen et al. [18] implemented
146distributed Message Passing Interface (MPI) clustering for
147high-performance computing through Docker. Setting up
148MPI clusters was originally very time-consuming, but with
149Docker, they made this work relatively easy. Julian et al. [19]
150optimized the auto-scaling network cluster with Docker, and
151they believe that Docker containers can be used more widely
152in larger production environments.

1532.2 Classic Isolation Forest Algorithm

154Unlike other algorithms, the Isolation Forest algorithm (i.e.,
155iForest [20]) does not need to define a mathematical model
156nor does it require training. It is somewhat similar to the
157dichotomy. The iForest consists of a number of isolation
158trees (i.e., iTree) where the leaf nodes are all single data.
159The sooner data is isolated, the more sparse it is in the data
160set, and therefore the more likely it is abnormal.
161Assume that there are N data items in the data set. The
162steps of building an iTree are as follows:
163First, we get n samples from the N data items as the
164training samples for this tree.
165Second, we randomly select a feature, and randomly
166select a value p within the range of all values of this feature
167as the root node of the tree, then perform a binary division
168on the samples. The sample value that is smaller than p is
169divided into the left side of the root node, and the sample
170value that is greater than p is divided into the right side of
171the root node.
172Third, we repeat the above process on the left and right
173data items until reach the termination condition. One is that
174the data itself cannot be divided (only one sample or all
175samples are the same), and the other is that the height of the
176tree reaches log2ðnÞ.
177To make anomaly detection, we construct an iForest that
178consists of a number of iTrees. Assume the path length
179between each data x and the root node is hðxÞ, the average
180of all hðxÞ is EðhðxÞÞ. sðx; nÞ is the anomaly value of data x
181in the n samples of a data set. We compute it as follows:

sðx; nÞ ¼ 2
�EðhðxÞÞ

cðnÞ

� �
(1)

183183

184

cðnÞ ¼ 2Hðn� 1Þ � ð2ðn� 1Þ=nÞ; HðkÞ ¼ lnðkÞ þ �: (2) 186186

187
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188 The range of sðx; nÞ is [0, 1]. The closer to 1, the higher the
189 probability of an outlier is. The closer to 0, the higher the
190 probability of x is normal. If most of the sðx; nÞ are close to
191 0.5, the entire data set is considered to have no obvious
192 outliers.

193 2.3 Monitoring System

194 Ganglia [6] is an open source cluster monitoring project ini-
195 tiated by UC Berkeley. Ganglia’s main component includes
196 gmond, gmetad, and a web front end. Gmond is installed
197 on the monitored physical machine and is responsible for
198 monitoring the collection of data. Gmetad is responsible for
199 collecting data on the gmond and gmetad nodes. The web
200 front end can show real-time data of the entire monitoring
201 system. However, Ganglia can only provide monitoring
202 and cannot analyze the cause of the anomalies.
203 Nagios [8] is a monitoring system that monitors system
204 operating status and network information. It can monitor
205 specified local or remote hosts and services, and provide
206 exception notification functions. It can run on a Linux/Unix
207 platform and also provides an optional browser-based web
208 interface to allow system administrators to view network sta-
209 tus, various system issues, and logs. BothNagios andGanglia
210 need to set threshold, which is not suitable for monitoring a
211 large number of containers in dynamically changing scenes.
212 Akshay et al. [12] proposed a simple container monitor-
213 ing method that uses docker’s own API to obtain resource
214 and store it in the database. The method estimates the stan-
215 dard deviation of a resource monitoring parameter. The
216 monitored data will be stored in the database only if the
217 standard deviation exceeds a certain limit. This method has
218 merit in data storage but lacks an alarm function.
219 cAdviosr [13] is a monitoring tool used by Google to pro-
220 vide a single-node multi-container resource monitoring
221 function. As a running daemon, it collects, aggregates, pro-
222 cesses, and exports information about running containers. It
223 can obtain individual parameters and historical resource
224 usage data for each container. Although cAdviosr is easy to
225 set up and can generate charts, it can only monitor one
226 Docker host and does not apply to a multi-node cluster
227 environment. In addition, the chart data is just a one-minute
228 sliding window. There is no data storage function, and no
229 alarm function.

2302.4 Anomaly Detection Method

231The mathematical statistics-based method [9] builds some
232standard distribution models based on historical data, finds
233data points that deviate from distribution, and judges them
234as anomalies. However, most of the models are based on the
235assumption of a single variable. When the monitoring metric
236is multidimensional, it is difficult to accurately identify the
237anomaly. In addition, these models are calculated using the
238original data which contains noise data that has a significant
239impact on the building of the distributionmodel [21].
240The information entropy based method [22] detects
241anomalies by comparing the entropies of the same cluster at
242different time. If there is a large fluctuation, it indicates the
243occurrence of anomalies. However, this method is only suit-
244able for a stable operating environment. The dynamically
245changing container cluster will result in inaccurate detec-
246tion results.
247The idea of the distance-based method [23] is to calculate
248the distance between different data. When the distance
249between two data items is less than a neighbor distance D,
250they are regarded as “neighbors”. If the number of neighbors
251of a data is less than the threshold p, then the data is judged
252to be an anomalous data. However, this method is not suit-
253able for scenarios where the data distribution belongs to a
254multi-cluster structure [24]. Typically, multiple continuous
255anomalous resource metric data appear and cluster to be
256neighbors when an anomaly occurs. However, they cannot
257by identified by this method.
258The most representative of the density-based methods is
259the Local Outlier Factor [10], which measures the degree of
260abnormality of each data instance based on the density-
261based local outlier factor. The larger the local outlier factor,
262the more likely it is abnormal. However, the local data den-
263sity estimate can cause significant computational overhead
264when the sample data size is large [25]. Thus this is not suit-
265able for a large number of containers.

2663 SYSTEM DESIGN AND IMPLEMENTATION

2673.1 Architecture

268The monitoring system architecture is shown in Fig. 1. It
269mainly consists of four components: Monitoring agent, Moni-
270toring data storage, Anomaly detection, and Anomaly analysis.
271There is only one monitoring agent on each host machine.
272It uses the non-invasive way to obtain the resource utiliza-
273tion rate of the container. The monitoring data storagemodule
274receives the monitoring data from each host. Only the moni-
275toring data in the most recent period of time is stored, and
276the data is organized into a specified format and sent to the
277anomaly detection module. The anomaly detection module
278detects data received from the monitoring data storage mod-
279ule through a iForest-based abnormality evaluation method,
280and sends abnormal container information to the anomaly
281analysis module, which first obtains the log of the abnormal
282container from each host, then analyzes the log and locates
283the cause of the anomaly.

2843.2 Monitoring Agent

285The internal design of the monitoring agent is shown in
286Fig. 2. Monitoring agent collects the container data through
287the monitoring data collector. Then the monitoring agent

Fig. 1. System architecture.
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288 communicates with the monitoring server, establishes a
289 data transmission channel, and transmits the collected
290 monitoring data through the channel. The monitoring cycle
291 adjustment module will adjust the monitoring period
292 according to the instructions from the monitoring server.
293 Monitoring Data Collection. This module is responsible for
294 collecting monitoring data of all running containers on the
295 host machine. The typical monitoring data includes the con-
296 tainer’s ID, time, CPU usage, memory usage, disk read/
297 write speed, and network speed.
298 Monitoring Data Processing. This module receives the col-
299 lected monitoring data from the monitoring data collection
300 module. The module then performs two steps. The first step
301 is to format the data and encapsulate the container’s ID,
302 time, and various resource usage into a format that the data-
303 base can store directly. The second step is to check if there
304 are identically mirrored containers running the same ser-
305 vice and, if so, to summarize their monitoring data.
306 Container Information Management. This module mainly
307 monitors the running status information of the container
308 through the Docker API, including the startup of new con-
309 tainers, the close of old containers, their IDs, task information,
310 and mirroring information. Then it passes these information
311 to the data collection control module.
312 Monitoring Period Adjustment. The module maintains a
313 data table, which contains the ID of each container on the
314 host and its monitoring period. When receiving the monitor-
315 ing period adjustment command sent by the server, themod-
316 ule changes the monitoring period and sends the changed
317 results to the data collection control module.
318 Data Collection Control. This module is the control center
319 of the monitoring agent and maintains a collection queue. It
320 will calculate the next monitored container based on the last
321 collection time and monitoring period of each container,
322 and send this information to the monitoring data collection
323 module. At the same time, the module also accepts the con-
324 tainer start and stop information transmitted by the con-
325 tainer information management module, thereby adding or
326 deleting containers in the queue. The module can also adjust
327 the monitoring sequence of the containers in the queue
328 according to the monitoring period modification informa-
329 tion transmitted by the monitoring period adjustment

330module. The monitoring period indicates the time interval
331to collect the container information. When a container is
332found to be likely to be abnormal, its monitoring period is
333reduced by half in order to identify the anomaly as soon as
334possible. In this case, the corresponding container informa-
335tion will be collected more frequently. Thus the container
336will be adjusted to a position in the front of the queue. In
337contrast, if a container recovers to normal, its monitoring
338period will double. The container will be adjusted to a posi-
339tion in the back of the queue.
340Log Collection. Based on the log collection command from
341the monitoring server, the module collects logs for the speci-
342fied container and passes the log to the transmission mod-
343ule in the specified format.
344Transmission. It mainly has two functions: On one hand, it
345accepts various commands from the monitoring server and
346forwards the commands to the corresponding modules. On
347the other hand, it transfers the monitoring data to the moni-
348toring server.

3493.3 Monitoring Data Storage

350The monitoring data storage module is responsible for storing
351the data collected by the monitoring agent and transmitting
352the data to the anomaly detectionmodule in a specified format.
353It uses InfluxDB [26] to store the collected container infor-
354mation. InfluxDB is an open source distributed timing,
355event and metrics database. It supports data transfer in the
356json format, thus facilitating data interaction with the moni-
357toring agent and the anomaly detection module. A data
358table is created to store all the information of the containers.
359These information includes the container ID, the CPU
360usage, memory usage, disk read rate, disk write rate, net-
361work receive rate, network transmission rate of the con-
362tainer and data collection time. In order to save storage
363overhead, only the last hour of monitoring data is stored in
364the database.
365The database also has a storage control table with three
366fields, the container ID, the number of rows in the data
367table, and the last modification time. There are three opera-
368tions for the container information.
369Creation and Insertion. After receiving the monitoring data
370sent by the monitoring agent, the container information is
371inserted into the data table. If the same container ID is not
372found in the data table, it indicates that the monitoring data
373is from a newly opened container. The database will create
374a new row in the storage control table to add the informa-
375tion of the new container. If the same ID is found, the num-
376ber of rows and the modification time of the corresponding
377container in the storage control table is modified.
378Deletion. The storage control table is scanned for every
379ten minutes. When it is found that the information of a con-
380tainer has not been updated for more than ten minutes, it is
381judged that the container has been closed, and the database
382deletes the corresponding container information in both the
383data table and the storage control table.
384Sending Data to the Anomaly Detection Module. Because in
385the anomaly detection module, a certain amount of data is
386needed to build an isolation forest. When the value of num-
387ber of rows in the storage control table for a container reaches
388100, 100 rows of data in the data table for this container are
389sent to the anomaly detection module in json format.

Fig. 2. Monitoring agent internal design.
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390 3.4 Anomaly Detection

391 3.4.1 Data Cleaning

392 Due to the large amount of container data to be collected,
393 there may be data loss, duplication, or changes in transit
394 and storage. Therefore, before constructing an isolation for-
395 est, it is necessary to first clean the data and remove the
396 dirty data inside. Common dirty data types are shown in
397 Table 1:
398 The first is to delete the redundant data in the data set.
399 Redundant data can affect the structure of isolation forests
400 and reduce the accuracy of anomaly detection. When multi-
401 ple identical records appear, the extra data must be deleted.
402 In addition, the integrity of the data set must be pre-
403 served. The absence of data often occurs in datasets and
404 must therefore be handled appropriately, or else it will
405 affect the structure and anomaly detection accuracy of isola-
406 tion forests. Severe missing cases are defined as: a) Missing
407 more than 20 percent of monitoring points over a period of
408 time. b) Missing consecutive 5 or more monitoring points.
409 If there is a serious loss of data in the data set, the data in
410 that period is excluded from the detection range.

411 3.4.2 Optimization of Isolation Forest Algorithm

412 Introduction and Calculation of Resource Weight. The idea of the
413 classic iForest algorithm has been very concise and efficient,
414 and can be directly applied to many application scenarios.
415 However, there are still some problems when it is applied to
416 the container environment. In container monitoring, there
417 are four most commonly used monitoring indicators: CPU
418 usage, memory usage, disk read and write rates, and net-
419 work speed. When the iForest algorithm is applied to the
420 container monitoring, these four indicators become the fea-
421 tures used to divide the data set. However, in the classic iFor-
422 est algorithm, the probability of being selected is the same for
423 all features in the random case. In the container environment,
424 the container applications that are CPU-intensive are more
425 dependent and sensitive to CPU resources, and the container
426 applications that are IO-intensive are more dependent and
427 more sensitive to IO. If containers that rely on different kinds
428 of resources are biased to use the same standard for monitor-
429 ing, it is inevitable that anomaly detection will not be
430 inaccurate.
431 Therefore, this paper designs an optimization method.
432 The basic principle of this optimization is to set a weight
433 value for each of the four resource indicators, and then to
434 change the random selection to weighted randomness when
435 selecting features in the construction of isolation trees. In
436 this way, resource indicators with high weights are more
437 likely to be selected for data classification than other indica-
438 tors. Therefore, the anomalies in containers that are more
439 dependent and more sensitive to such resources are more
440 likely to be found.

441Here, a self-learning method for resource bias optimiza-
442tion is proposed. During the normal use of a container, the
443container’s bias parameters M for each resource is calcu-
444lated as formula (3):

M ¼
0; ðPp

i¼1 Ni ¼ 0Þ
W0 þ

Pp

i¼1
fðNi��Þ
p

(
: (3)

446446

447

448W0 is the initial weight value of the resource metric, and
449its value is 1. � is the resource threshold. Ni is the usage rate
450of the resource at the time i. p is the number of times to mea-
451sure the resource usage. If x > 0, then fðxÞ ¼ 1, otherwise
452fðxÞ ¼ 0. If the value of the resource metric is always 0, the
453container does not use the resource. So we set its weight to
4540. The larger the parameter M, the more the container is
455biased toward the resource.
456The bias parameter M is used as the weight value for
457each resource metric. First of all, by default, all resource
458indicators have a weight value of 1. Then we determine the
459period under which the weight value is modified. We spec-
460ify every 10 minutes as a period. The bias parameter M is
461calculated by the data usage rate during this period, and
462then the weight value is replaced by M. Finally, a weighted
463random algorithm is used to select the eigenvalues. The
464pseudocode of the algorithm is shown in Algorithm 1.

465Algorithm 1.Weighted Random Algorithm

466Input: M1;M2;M3;M4 ///M1 is CPU weight, M2 is Memory
467weight,M3 is IO weight,M4 is Network weight.
468Output: i ///A feature among the four features (CPU usage
469rate, Memory usage rate, IO rate, Network usage rate).
4701: Mall ¼ M1 þM2 þM3 þM4

4712: R ¼ RandomðÞ �Mall

4723: for i ¼ 4; R > 0; i ¼ i� 1 do
4734: R ¼ R�Mi

4745: end for
4756: return i

476M1, M2, M3, and M4 are the four resource weight values.
477Mall is the sum of all weight values.R is a random data in the
478range of 0 toMall, and the last returned i is an index number
479of the resource selected as a feature to divide the data set.
480Anomaly Resource Metric Judgement. The iForest algorithm
481can calculate the anomaly value of the multidimensional
482resource metrics, but cannot determine which metric causes
483the anomaly. For example, there are two kinds of exception
484cases, one is that the CPU usage is abnormally increased,
485and the other is that the memory usage is abnormally
486increased. The anomaly value is similar in both cases using
487the iForest algorithm. It is impossible to distinguish which
488kind of anomaly in resource usage that has caused this. In
489order to solve this problem, this paper proposes a method
490to judge the anomaly metric.

4911) When constructing an isolation tree, if a leaf node is
492generated when a division is performed, the feature
493selected by the division is called an isolation feature
494of the data on the leaf node, indicating that this data
495is isolated by this feature in the last division.
4962) Set an isolation feature group for each data, such as
497SðS1; S2;:::; SnÞ. Si represents the number of times

TABLE 1
Dirty Data Type

Category Dirty data manifestations

Missing value One of the data is null
Repeat value Redundant data appears
Maximum or minimum Suddenly the data is too big or too small

ZOU ET AL.: A DOCKER CONTAINER ANOMALY MONITORING SYSTEM BASED ON OPTIMIZED ISOLATION FOREST 5
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498 the metric feature numbered i is used as an isolation
499 feature of the data in the isolation forest.
500 When we repeatedly construct isolation trees and make a
501 summarize of the isolation feature group for each data, the
502 resource metric with a higher value in the isolation feature
503 group is more likely to be anomalous than the resource met-
504 ric with a lower value. Thus it can be judged which resource
505 metric mainly caused the increase in the anomaly value of
506 the monitoring data.
507 The method is based on a premise: if a feature value of a
508 data has a large difference from the value of this feature of
509 other data, then when dividing by this feature, this data is
510 more likely to be isolated separately. Therefore, it can be
511 inferred that the isolation feature of a data is also the feature
512 that is most likely to have the biggest anomalous value.
513 When it is determined that the container is abnormal, the
514 isolation feature group of the anomalous monitoring data
515 and the isolation feature group of the normal monitoring
516 data are compared. We calculate the ratio of the correspond-
517 ing values of the metrics in the isolation feature groups. The
518 higher the ratio, the higher the degree of anomaly of the
519 metric.
520 Construction of iTree and iForest. Isolation forest consists of
521 many iTrees. iTree is a kind of random binary tree. Each
522 node has either two child nodes or is a leaf node itself. Leaf
523 nodes are isolated data. This article uses the container’s
524 CPU usage, memory usage, IO read/write rates, and net-
525 work rate as four features for constructing an isolation tree.
526 iTree construction steps are as follows:

527 1) Calculate the bias of each resource of the current con-
528 tainer based on the monitoring data, and modify the
529 corresponding feature weight;
530 2) Select a feature F among the four container resource
531 features. (i.e., CPU usage rate, Memory usage rate,
532 IO rate and write rate, Network rate) according to
533 Algorithm 1;

5343) Randomly select a value n from the range of the
535value of feature F;
5364) According to the feature F, the data set is divided.
537The data with the value of feature F less than n are
538divided into the left branch, and the data with the
539value of feature F greater than or equal to n are
540divided into the right branch.
5415) Repeat steps 2) through 4) recursively to construct
542the left and right branches of the iTree until the fol-
543lowing conditions are met:
544a) There is only one data in the data set to be split;
545b) The height of the tree reaches a predefined height
546As shown in Fig. 3, the construction of the isolation forest
547is somewhat similar to the random forest. Each part of the
548data set is randomly sampled to construct each tree. Then
549we calculate the average height of each data in all the itrees
550and compute the anomaly value of the data according to
551formulas (1) and (2). We can further compute the number of
552times that each resource metric is used as the isolation fea-
553ture and identify the anomalous resource metric.

5543.4.3 Monitoring Period Adjustment

555In order to improve the timeliness of monitoring, the moni-
556toring period can be reduced to collect more monitoring
557data to detect changes in the monitoring data anomaly
558value earlier in the case of possible anomalies. An anomaly
559sensitivity threshold f is set to determine whether an anom-
560aly is likely to occur. The value of f is related to the anomaly
561detection threshold d and can be expressed as:

f ¼ dþ p

2
: (4) 563563

564

565p is the normal anomaly value originally set for the isola-
566tion forest and is set to 0.5 by default. When the average value
567of the anomaly value of the data in a period is between f and
568d, although the criterion for judging the anomaly is not
569reached at this time, the high anomaly value indicates that the
570containermay be abnormal. At this time, the container is set as
571an intensive monitoring object, and the monitoring server
572sends a message such as {“container_id”: 100 ; “type”: inten-
573sive} to themonitoring agent. The container_id is the ID of the
574container, and there are two types: intensive and extensive.
575When the type is intensive, the corresponding monitoring
576period is set to half of the initial monitoring period. When the
577average value of the anomaly value of the data is lower than f ,
578the command of type extensive is sent to themonitoring agent to
579adjust the monitoring period to the initial monitoring period.

5803.5 Anomaly Analysis

581The anomaly analysis module mainly analyzes the log of the
582abnormal container identified by the anomaly detection mod-
583ule, and finds why the anomaly is caused. The source data
584for the anomaly analysis are the log collected by the log col-
585lection module in the monitoring agent. The anomaly analysis
586module mainly contains the following two parts.

5873.5.1 Log Preprocessing

588Before the log analysis, the first step is to perform log pre-
589processing. We extract only useful log events to reduce stor-
590age overhead and analysis overhead.

Fig. 3. Isolation forest construction process.
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592 format, which will generate a large number of escape
593 sequences such as u0008. This greatly increases the amount
594 of logs. Therefore, the corresponding filtering process
595 should be performed on such escape sequences. There are
596 also many events in the application log that are not related
597 to exception analysis. For example, the web application logs
598 records the access logs (such as access on jpg files) that have
599 no effect on the anomaly analysis. And this part needs to be
600 filtered. The specific operation of log filtering is to configure
601 regular expression matching in the filter plugin of the log-
602 stash [27] configuration file, and then use the drop operation
603 to delete the matching corresponding log content. Then the
604 filtered log data will be stored into database.

605 3.5.2 Log Analysis

606 The main function of the log analysis module is to mine the
607 frequent itemsets of the pre-processed log events, compare
608 them with the rule database, find out the log events that
609 caused the exceptions, and update the rule database. The
610 rule database includes two types: the normal rule database
611 and the exception rule database. The rules in the normal rule
612 database represent the frequent itemsets generated when the
613 container is running normally. The rules in the exception
614 rule database are divided into two types. One is an empirical
615 exception rule, which is an exception filtering condition
616 added by experience, such as a log level of ERROR, or a regu-
617 lar expression that can find a typical abnormal log event by
618 matching. The other is a historical anomaly rule, which is
619 obtained by filtering the frequent itemsets of the log that
620 were previously analyzed and caused by the administrator.
621 The basic flow of log analysis is as follows:
622 First, we match the log stored in the database with the
623 empirical exception rules in the exception rule database. If
624 the match is successful, the log event alarm is output. Other-
625 wise, the Apriori algorithm [28] is used to mine the frequent
626 itemsets in the log transaction.
627 Second, we match the frequently mined itemsets with the
628 normal rules and the historical exception rules. If it matches
629 the normal rules, it is filtered out. If it matches the historical
630 exception rules, the log event alarm corresponding to the
631 frequent itemsets is output.
632 Third, if none of the matches is successful, the adminis-
633 trator selects the frequent itemsets and adds them to the
634 normal rule database and the exception rule database.

6354 EXPERIMENTAL EVALUATION

6364.1 Experimental Environment

637We do experiments in both simulated and real cloud envi-
638ronments. For the simulated cloud environment, we deploy
639monitoring server in one machine, and monitoring agent
640and Docker container in the other machine. The configura-
641tion information is shown in Table 2. For the real cloud envi-
642ronment, we adopt the Amazon EC2 service [29]. We use
643two types of configurations. One type is called t3. medium
644with 2 CPU cores and 4 GB RAM. Another type is for free
645and it is called t3.small with limited use of 1 CPU core and
6462 GB RAM. Both of the platforms run Ubuntu 16.04 and
647Docker 18.03.1-ce. All the monitoring components run in
648the cloud platform.
649We demonstrate the monitoring system with two repre-
650sentative benchmarks in cloud environment. One of them is
651Memcached, and the other one is Web Search in CloudSuite.
652Memcached is an open source, high-performance, distributed
653memory object caching system and intended for use in speed-
654ing up dynamic web applications by alleviating database
655load [30]. CloudSuite is a benchmark suite for cloud services
656and consists of eight applications that have been selected
657based on their popularity in today’s data centers [31]. The
658Web Search benchmark is one of them and relies on the
659Apache Solr search engine framework. It contains a 12 GB
660index which was generated by crawling a set of websites
661with Apache Nutch. For Memcached, we use Mutilate [32] as
662a workload generator, and for Web Search, we use Faban cli-
663ent provided by CloudSuite as aworkload generator.
664Since there is no benchmark for container anomaly injec-
665tion, we divided anomaly into four common categories that
666involve different resource metrics. They are shown and
667illustrated in Table 3.
668Similar to the previous work [33], we use the following
669four cases to simulate the anomalies.
670Endless Loop in CPU.We inject this fault in the application
671by inserting additional code to call stress tool [34], which
672can simulate an endless loop in the CPU and take up CPU
673utilization of 100 percent .
674Memory Leak. The injected code allocates heap memory
675without releasing objects, which can gradually take up 100
676percent of memory utilization.
677Disk I/O Fault. We use FIO [35] to inject extra operations
678of reading and writing disk and simulate disk I/O fault.
679Network Congestion. We simulate network congestion by
680using wondershaper [36] to limit the bandwidth of the spec-
681ified network interface.

6824.2 The Result Comparison of Anomaly Detection

683We use detection rate and false alarm rate to evaluate the
684result of anomaly detection.

TABLE 2
Configuration Information of the Experiment

Machine Hardware Configuration Software Configuration

1 Intel(R) Xeon(R) CPU
E5620 @ 2.40 GHz, 16
Cores, 32G RAM

Ubuntu 16.04
Docker 18.03.1-ce
InfluxDB 0.13.0
MySQL 5.7

Logstash 6.2.4

2 Intel(R) Xeon(R) CPU
E5620 @ 2.40 GHz, 16
Cores, 32 G RAM

Ubuntu 16.04
Docker 18.03.1-ce
Memcached v1.5.7
CloudSuite v3.0
Logstash 6.2.4

TABLE 3
Species of Anomalies

Classification of anomalies Illustration

Anomalies about CPU Endless loop, spin lock
Anomalies about memory Memory leak, memory overflow
Anomalies about disk Improper disk scheduling, log explosion
Anomalies about net Network attack, network congestion
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Pdetection rate ¼ TP

TP þ FN
� 100% (5)

686686

687

Pfalse alarm rate ¼ FP

TP þ FP
� 100%: (6)

689689

690

691 TP (true positive) indicates the number of anomalies
692 which are classified correctly. FN (false negative) represents
693 the number of anomalies which are not identified. FP (false
694 positive) summarizes the normal behaviors that have been
695 judged as anomalies.
696 In order to test the detection result of the proposedmethod,
697 two other detection methods are used as comparisons. One is
698 original iForest-based anomaly detection method, and the
699 other is based on local anomaly factor algorithm (i.e., LOF
700 [10]) which is the most representative density-based anomaly
701 detection method. 200 tests were performed and each of the
702 four typical anomaliesmentioned above is injected 50 times.
703 Tables 4 summarize the result of anomaly detection for
704 different methods on Memcached and Web search respec-
705 tively. The results show that the optimized iForest has a
706 lower false alarm rate on Memcached compared to Web
707 Search. This is because the Memcached container’s resource
708 metric under the normal load is very stable. When an anom-
709 aly occurs, the anomaly value of themonitoring data changes
710 greatly, so it has a high detection accuracy. The fluctuation in
711 the resource metric of Web Server under the normal load is
712 not small, and sometimes continuous fluctuations will cause
713 the anomaly value to rise beyond the anomaly detection
714 threshold, resulting in false alarms.
715 The optimized iForest has a significant improvement on
716 detection rate compared to the original iForest. This is because

717the anomalous resource metric in optimized iForest is
718assigned a large weight and thus more easily to be chosen as
719the isolation feature to divide the data set. The average height
720of the data divided using the isolation feature in iForest is
721thereby very small, resulting in a big anomaly value. Thus the
722detection rate of the optimized iForest is high.
723The optimized iForest has a comparable or better perfor-
724mance than LOF. For instance, under the injection of Disk
725I/O fault, the detection rate of LOF is significantly lower
726than that of optimized iForest. It is because anomalous disk
727read or write rate is not much different from normal disk
728read or write rate which has a small fluctuation. So the local
729density of monitored data has only a little change and thus
730detection rate of LOF is low. Besides, LOF has a higher false
731alarm rate compared to optimized iForest, especially on
732Web Search. It indicates LOF is more susceptible to fluctu-
733ant resource metrics at normal runtime.
734The above experiments assume that the injectedmalicious
735programs consume 100 percent of CPU by endless loops.
736However, in practical, the malicious user who tries to com-
737promise the performance of whole system can use malicious
738programs that not only take 100 percent of CPU but, for
739example, 60 percent of CPU for a long time. Table 5 shows
740the performance results in this case for two types of cloud
741environments. Cloud1 and Cloud2 represent the different
742cloud platforms with multiple cores and single core respec-
743tively. For Cloud1, we use the siege tool [37] to simulate the
744web attack that consumes 60–80 percent CPU resource. For
745Cloud2, we find that the siege tool cannot increase the CPU
746utilization by 60 percent. Instead, we execute a programwith
747500 thousand times of loops. For each loop, the program
748sleeps for 0.1 milliseconds. The optimized iForest performs
749the best on detection rate in both of the two cloud environ-
750ments. Though the original iForest has no false alarms, it can-
751not detect the anomaly caused by the malicious program in
752most of the time. Comparatively, the optimized iForest has
753an acceptable small false alarm rate. The false alarm rate in
754Cloud2 is larger than in Cloud1 for the optimized iForest.
755The possible reason is that there exists more fluctuations in
756the resourcemetrics in Cloud2.
757Overall, optimized iForest has better anomaly detection
758results compared to other two methods.

7594.3 A Case for Anomaly Detection

760Here is an example showing how to detect anomaly inMemc-
761ached container. During the period of running inMemcached

TABLE 4
The Result Comparison of Anomaly Detection on Memcached and Web Search

Anomalies
Original iForest Optimized iForest LOF

Detection rate False alarm rate Detection rate False alarm rate Detection rate False alarm rate

Memcached

Endless loop in CPU 38% 0% 100% 2% 100% 5.8%
Memory leak 30% 0% 98% 2% 85% 2.3%
Disk I/O fault 46% 4.2% 76% 5% 54% 6.9%

Network congestion 94% 2.1% 100% 2% 100% 2%

Web Search

Endless loop in CPU 48% 7.7% 100% 5.7% 100% 12.3%
Memory leak 40% 4.8% 100% 7.4% 96% 14.3%
Disk I/O fault 42% 5.7% 72% 12.2% 58% 23.7%

Network congestion 74% 5.1% 84% 6.7% 80% 14.9%

TABLE 5
TheResult Comparison of Anomaly Detection when theMalicious
ProgramConsumes CPUUtilization that Exceeds 60 percent

Platforms Categories Original
iForest

Optimized
iForest

LOF

Cloud1 Detection rate 24% 100% 100%
False alarm rate 0% 1.96% 4.76%

Cloud2 Detection rate 16% 100% 79%
False alarm rate 0% 3.84% 11.23%

Cloud1: Amazon EC2, t3.medium, 2 CPU, 4 GB RAM; Cloud2: Amazon EC2,
t3.small, 1 CPU, 2 GB RAM.

8 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 7, NO. X, XXXXX 2019



IEE
E P

ro
of762 container, three events are inserted. Two of them are anoma-

763 lies, which are the endless loop of CPU and network conges-
764 tion. The other event is the workload increase. The calculated
765 weights of resourcemetrics are shown in Table 6.
766 Fig. 4 illustrates the CPU utilization and network receive
767 rate monitored at Memcached containers runtime. Note that
768 in a system with multiple cores where the container applica-
769 tions are running, the CPU utilization can exceed 100 percent.
770 Actually, in a docker system with n cores, the total system
771 CPUutilization can be 0–n*100% [38], [39].
772 Fig. 5 illustrates the variation of anomaly indexes calcu-
773 lated according to monitor metrics. It shows that when an
774 endless loop in the CPU is injected, the anomaly indexes
775 increase significantly. The average value of the anomaly
776 indexes between the monitoring time point at 121 and 130 is
777 0.585, which exceeds the detection threshold in red line.
778 Thus the container is identified as anomalous. When net-
779 work congestion is injected, the anomaly indexes increase
780 significantly. The average value of the anomaly indexes
781 between the 251th and 260th monitoring points is 0.582,
782 which exceeds the detection threshold. And the container is
783 identified as anomalous. However, the workload increase
784 does not make the anomaly index increase, and thus it is
785 not identified as an anomaly.
786 The anomalous resource metric needs to be located after
787 detecting container anomaly. We propose a method that

788calculates the ratio of isolation features in the anomalous
789phase to isolation features in the normal phase. Table 7
790shows the ratio of isolation features when endless loop in
791CPU and network congestion are injected. It can be seen
792that the ratios of isolation features for anomalous resource
793metrics are higher than others. So this method can accu-
794rately locate the anomalous resource metric.

7954.4 Detection Threshold d

796The detection rate and false alarm rate are closely related to
797the detection threshold d. In order to find the optimal value,
798200 tests were performed, including the four typical anoma-
799lies mentioned above and each of them was performed 50
800times. Different detection thresholds were used for detec-
801tion. The results are shown in Fig. 6.
802Both the detection rate and false alarm rate decrease rap-
803idly with the increase in d. We need to choose the value of d
804with a high anomaly detection rate and a low false alarm
805rate. According to the Fig. 6, the optimal value of d is 0.54.

8064.5 The Number of iTrees

807The number of iTrees is an important parameter in the opti-
808mized iForest. In order to find its optimal value, we mea-
809sure the detection rate and the false alarm rate and the
810computation time under different numbers of iTrees. The
811detection threshold is set as 0.54. The results are shown in
812Fig. 7.
813It can be seen that the detection rate increases and the
814false alarm rate decreases as the number of iTrees increases.
815But the computation time still increases proportionally.
816Increasing the number of iTrees does not improve anomaly
817detection effect after the number of iTrees is bigger than
818100. So the optimal value of the number of iTrees is 100.

TABLE 6
The Weights of Resource Metrics

Resource metric Weight

CPU utilization 2
Memory utilization 1
Disk read rate 0
Disk write rate 0
Network receive rate 2
Network transmit rate 1

Fig. 4. Resource metrics monitored at Memcached containers runtime.
Note that in a docker systemwith n cores, the total systemCPU utilization
can be 0–n*100% [38], [39]. The value of n is 16 in this experiment.

Fig. 5. Anomaly values of Memcached container at runtime. The red line
shows the detection threshold.

TABLE 7
Ratio of Isolation Features when Endless Loop in

CPU and Network Congestion are Injected

Resource
metric

Ratio of isolation
features

endless loop in CPU

CPU utilization 1.23
Memory utilization 0.81
Network receive rate 0.89
Network transmit rate 0.83

network congestion

CPU utilization 1.13
Memory utilization 0.75
Network receive rate 1.16
Network transmit rate 0.78
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819 4.6 Monitoring Delay

820 The interval betweenwhen the anomaly is injected andwhen
821 the anomaly is found is defined as themonitoring delay. Two
822 sets of anomaly detection tests based on the optimized iForest
823 are performed. One of tests uses the fixed monitoring period
824 of 4 seconds, i.e., we get a group of container data every
825 4 seconds. The other test adopts the method of dynamically

826adjusting the monitoring period. The initial monitoring
827period is also 4 seconds. We inject four typical anomalies
828mentioned above for each test. The comparison results are
829shown in the Fig. 8.
830The monitoring delay of dynamically adjusting period is
831significantly lower than the monitoring delay of fixed moni-
832toring period.When an anomaly is identified, themonitoring
833period reduces by half.Moremonitoring data is collected in a
834unit of time, making the anomaly detected earlier. When the
835container recovers to the normal status, the monitoring
836period is adjusted to the initial value. The dynamically
837adjusting period reduces monitoring delay by an average of
83813.5 percent.
839The average monitoring delays are between 40 and
84055 seconds while the setting of monitoring period is fixed 4
841seconds. The reason is as follows. The optimized iForest
842algorithm initially gets 100 groups of data to build an iForest.
843It has a window size of 100 and a sliding distance of 10.
844Whenever it gets 10 new groups of data, it uses previously 90
845groups of data and this 10 new groups of data to build a new
846iForest. If the average anomaly value of this 10 groups of
847data exceeds the detection threshold, an anomaly can be
848identified. As it takes 4 seconds to get a group of data, it
849needs a total of 40 seconds to get this 10 groups of container
850data. Thus when the anomaly of these data is identified, the
851monitoring delay is at least 40 seconds. Comparatively,
852when the monitoring period can be dynamically adjusted,
853the monitoring period can be below 4 seconds. Thus the
854monitoring delay can be lower than 40 seconds sometimes.

8554.7 Cases for Log Analysis

856Here are two examples showing how to analyze containers
857logs. In order to locate the cause of anomaly by analyzing
858logs, two anomalies which leave traces in the logs are injected.
859One is reading and writing disk constantly using postmark to
860simulate the disk attack. The other is to send a large number
861of GET requests to the webpage to simulate the network
862attack.
863Disk Attack. When postmark is running constantly, the
864disk read-write rate increases abnormally, and the container

Fig. 6. Anomaly detection effect diagram in the case of different detec-
tion threshold d.

Fig. 7. Anomaly detection results with different numbers of iTrees.

Fig. 8. Average monitoring delay comparison.
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865 is identified as anomalous. Then the anomaly analysis mod-
866 ule collects anomalous containers system log. After pre-
867 processing, the size of log diminishes from 476 KB to
868 143 KB. Then the log is stored in the database.
869 The result of association rule analysis is:
870 Creating files...Done stdout —(frequency)—–>>146
871 Data: stdout —(frequency)—–>>147
872 Deleting files...Done stdout —(frequency)—–>>146
873 It indicates there are 146 logging events including Creat-
874 ing files and 147 logging events including Data and 147 log-
875 ging events including Deleting files. It can be inferred the
876 container creates and deletes files frequently in anomalous
877 phase.
878 Network Attack. In this experiment, a nginx container starts
879 with a website running in it. To simulate network attack, an
880 anomaly injection program is performed to send a mass of
881 GET requests to the website. Then the network send/receive
882 rates increase abnormally, and the container is identified as
883 anomalous. The anomaly analysis module collects anoma-
884 lous containers application log. After pre-processing, the
885 number of logging events diminishes from 1434 to 723.
886 The result of association rule analysis is:
887 / 192.168.220.1 200 GET—(frequency)—–>>137
888 It indicates the cause of anomaly is that a host whose IP is
889 192.168.220.1 sends 137 GET requests to the website.

890 5 CONCLUSIONS

891 This paper proposes an online container anomaly detection
892 system by monitoring and analyzing multidimensional
893 resource metrics of the containers based on optimized isola-
894 tion forest algorithm. To improve the detection accuracy, it
895 assigns each resource metric a weight and changes the ran-
896 dom feature selection in the isolation forest algorithm to the
897 weighted feature selection according to the resource bias of
898 the container application. The monitoring period can be
899 dynamically adjusted according to the degree of abnormal-
900 ity to reduce the monitoring delay. In addition, it collects
901 and analyzes log for the cause of the anomalies. The experi-
902 mental results on both simulated and real cloud platforms
903 show that the method can accurately detect anomalies in
904 the container with small performance overheads.
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