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Abstract

Modern operating systems frequently support applica-
tions with a variety of timing constraints including hard
real-time, soft real-time, and best-effort. To guarantee
performance, critical applications typically over-reserve
resources based on worst-case resource usage estimates,
while others may reserve based on average-case or other
estimates. When resources are fully subscribed, the perfor-
mance of soft- and non-real-time applications depends upon
the effective distribution of dynamic slack—reserved, but
unused resources—from other tasks. Motivated by several
representative examples, we derive four general principles
for the effective management of slack. We have implemented
these principles in four progressively better slack sched-
ulers that demonstrate their effectiveness. BACKSLASH,
which employs all four principles, misses fewer soft real-
time deadlines than all of the other slack schedulers we ex-
amined.

1 Introduction

The increasing demand for more powerful computing
platforms and applications requires modern operating sys-
tems capable of simultaneously supporting applications
with a variety of different time constraints. The hierarchi-
cal HLS scheduler [16], the flat integrated RBED sched-
uler [4], the VRE model [9], the BEBS scheduler [2], and
the two-level hierarchical scheme [8] are examples. Such
systems simultaneously support (1) critical hard real-time
applications such as external signal sampling and process-
ing, (2) non-critical soft real-time applications such as desk-
top multimedia, and (3) best-effort applications such as
compilers, word processors,etc. In such systems, hard real-
time applications typically make worst-case resource reser-
vations in order to guarantee that they meet all of their dead-
lines, soft real-time applications reserve less than worst-
case to achieve a desired level of performance, and best-
effort applications make no reservations beyond what is
necessary to avoid starvation. Exacerbating the situation,

the increasing complexity of modern processors makes it
difficult to produce an accurate upper-bound of a task’s exe-
cution time [7], requiring conservative estimates of resource
usage.

Because actual application execution time often varies
in data-, time-, or system-dependent ways, applications fre-
quently use less resources than they have reserved, creat-
ing dynamic slack—reserved but unused resources1. Simi-
larly, all except critical hard real-time applications mayoc-
casionally (or even frequently) need more resources than
they have reserved. The efficient reclamation and redistri-
bution of dynamic slack to processes whose current needs
exceed their reservation can significantly improve the per-
formance of both soft real-time and best-effort applications.

By its very nature, the availability of dynamic slack is
unknown beforehand and can only be scheduled dynami-
cally, when it is detected. Similarly, overrun situations are
not known until a task has consumed all of the resources
that have been reserved for it. The traditional solution is
to schedule slack-consuming tasks when all real-time tasks
are idle. This guarantees that all hard real-time deadlines
will be met. In traditional priority-based real-time systems
(such as RT-Linux [19]), this is accomplished by giving all
hard real-time tasks higher priorities than all non-hard-real-
time tasks. Assuming that the rate monotonic schedulability
conditions are met [14], all real-time deadlines will be met
and non-real-time tasks will only run, and consume slack,
whenever all hard real-time tasks are idle. Modern general-
purpose systems such as Linux and others implementing the
POSIX standard [10] use similar mechanisms. Some re-
cent systems have begun to address this problem, including
CBS [1], CASH [5], GRUB [13], RBED [4], BEBS [2],
IRIS [15], and HisReWri [3]. These systems present var-
ious ideas that improve the performance of non-hard-real-
time tasks.

Based upon a careful study of the ways in which slack
can be more effectively used to meet the deadlines of tasks

1In this paper we are concerned only with dynamic slack. Static slack—
unreserved resources—may be consumed by changing the reservations of
one or more applications that can vary their resource usage.Thus, when-
ever we use the termslack, we are referring solely to dynamic slack.



whose resource usage exceeds their reservations, including
those in the systems above, we have derived four principles
for effective slack scheduling. These principles represent
a new understanding of the mechanisms underlying the ef-
fective use of dynamic slack and capture the key ideas be-
hind the effective slack management implemented in these
systems. Our principles are implemented in four progres-
sively better slack schedulers: SRAND, SLAD, SLASH,
and BACKSLASH. These schedulers demonstrate the in-
creasing effectiveness of each of the principles. BACK-
SLASH, which implements all four, misses fewer soft real-
time deadlines than all other slack schedulers we examined.

2 Related work

Many researchers have examined this problem in vari-
ous contexts and have developed a number of effective tech-
niques for improving slack scheduling. Far from contradict-
ing them, our research borrows from them, distilling out and
collecting the key principles that make for effective slack
management. Some of the most relevant related projects
are discussed below.

Slack stealing algorithms [12, 18] schedule aperiodic
or periodic low-priority jobs whenever the execution of
high priority jobs may be safely postponed without caus-
ing missed deadlines. The main drawbacks are thea priori
knowledge of execution times that is required and the over-
head incurred when computing the available slack during
scheduling decisions.

The Constant Bandwidth Server (CBS) [1] immediately
releases the next job of a task that has completed its current
job. By doing this, a task may borrow against its future bud-
get for current execution. CBS works for both periodic and
aperiodic task models, but suffers in that the early-release
effectively lowers the priority of slack-consuming tasks,
punishing them for consuming slack. IRIS [15] enhances
CBS with fairer slack reclaiming. BEBS [2] is similar to
IRIS, but designed for time-share applications. In these al-
gorithms, slack is not reclaimed until all current jobs have
been serviced and the processor will otherwise idle. Our
work focuses on improving the performance of soft real-
time processes in terms of missed deadlines and tardiness
by consuming slack as early (and not necessarily as fairly)
as possible.

GRUB [13] is a CBS-like algorithm that dynamically al-
locates excess capacity to active servers. It requires a very
fine granularity of time and must frequently compute the
duration that slack is available. The available slack is dy-
namically re-allocated to servers by updating their reserva-
tions. These dynamic operations incur a large overhead.
RBED [4] also provides CBS-like slack management for
best-effort processes, which may consume the slack of hard
real-time and soft real-time processes. Although slack is

evenly distributed among the runnable best-effort processes,
a newly-entered best-effort task can cause others to tem-
porarily starve; it also does not allow other classes of pro-
cesses (notably, soft real-time) to take advantage of dy-
namic slack. In HisReWri [3], designed for fixed priority
schedulers, recent scheduling history is reviewed and con-
sumed slack is retroactively allocated to tasks that executed;
if slack was available, tasks’ budgets are replenished by the
amount of slack they consumed.

CASH [5] extends CBS to include a slack reclaiming al-
gorithm. When a server becomes idle with residual budget,
the slack is inserted onto thecash queueordered by servers’
deadlines. Whenever a new server is scheduled for execu-
tion it will first use any queued budget whose deadline is
less than or equal to its own. CASH has the disadvantage
of using deadline extension for servers: the earliest avail-
able slack is always used for the current task whose server
has the earliest deadline, but a task that needs more budget
to complete will have its deadline postponed before it com-
pletes. CASH performs poorly with aperiodic tasks since
a task can’t start to use its own server’s budget until the
server’s previous slack in the cash queue is exhausted. Re-
cent modifications to CASH improve its bandwidth sharing
and allow it to work in the presense of shared resources [6].

The BWI algorithm [11] applies the idea of priority
inheritance to CPU resources in CBS, allowing a block-
ing low-priority process to steal resources from a higher-
priority process that it has blocked. The CFA algorithm [17]
improves the BWI algorithm by tracking stolen resources
and allowing victimized tasks to reclaim them. Both of
these mechanisms improve the performance of CBS in the
presence of priority inversions caused by access to shared
resources. Because our present research is concerned ex-
clusively with independent processes, neither BWI nor CFA
would affect the performance of CBS or any of the other
algorithms we examined. In addition, neither of these algo-
rithms directly manages slack, as ours do.

3 Slack scheduling principles

Our goal is to derive an effective EDF-based slack sched-
uler from first principles. We present a series of examples
demonstrating potential slack management problems. For
each problem, we present the solution to the problem, de-
rive a general principle embodying that solution, and dis-
cuss how the principle can be applied in practice.

3.1 When to allocate slack

The first question we examine is that of when to allocate
slack. The traditional approach is to allow slack-consuming
applications to run when all real-time tasks are idle, as im-
plemented in RT-Linux, Linux, and other systems based
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Figure 1. When to allocate slack

the POSIX standard. This approach isolates the real-time
tasks from the non-deterministic behavior of non-compliant
or otherwise non-real-time tasks but, because it delays the
use of the slack, it does not always allow it to be used for
overruns by other tasks, reducing its utility.

Figure 1(a) illustrates this problem. All three tasks (la-
beled T1, T2, and T3) are released at time 0. Task 1 has a
reservation of 1.5 time units, but needs 2 units to meet its
deadline at time 6. Task 2 has a reservation of 4 time units,
but only needs 2 units to meet its deadline at time 8. Task
3 has a reservation of 2.5 time units and needs all 2.5 units
to meet its deadline at time 10. Although Task 2 has slack
available at time 3.5 that could be used by Task 1, the sys-
tem is not idle until time 6, at which time Task 1 misses its
deadline.

The solution is to provide Task 2’s slack to Task 1 at time
3.5, as illustrated in Figure 1(b). The system should not wait
until all tasks are idle, nor should it use the next deadline of
the overrun task to determine its priority (as in CBS, IRIS,
RBED, and BEBS). Because they are reserved by Task 2,
the 2 time units of dynamic slack generated by Task 2 can
safely be used to meet the processing needs of Task 1, al-
lowing Task 1 to meet its deadline, without causing Task 3
to miss its deadline. This leads to a potential principle:

Potential Principle. Allocate slack as early as possible.

Because our goal is to meet timeliness constraints, earlier
allocation of slack should produce better results. Providing
slack to a task earlier may allow it to meet a deadline that
it would otherwise have missed, as shown in Figure 1(b),
and should never cause it to miss a deadline that it would
otherwise have met.

There is one problem with this potential principle. Al-
though a task should allocate slack as soon as it is avail-
able, it cannot necessarily allocate all of its slack immedi-
ately. If a higher-priority task comes along, that task must
be allowed to execute before the allocation of the slack
proceeds. The solution is to execute the slack-consuming
task with the priority of the donating task. In this way, the
slack-consuming task will never delay the execution of any
task that would not have been delayed by the execution of
the donating task had the donating task consumed all of its

reservation, preserving the correctness of the schedule. This
leads to Principle 1:

Principle 1. Allocate slack as early as possible, with the
priority of the donating task.

Implementing Principle 1 requires that the slack gener-
ated by all tasks is known at the time that they complete
the processing for their current job. This is feasible in any
scheduler that budgets resources to tasks and dynamically
tracks their resource usage, as does our system and many of
the other systems and schedulers discussed above.

Our SRAND algorithm, described in Section 4.3, imple-
ments Principle 1. When a task completes, any remaining
budget (slack) is used to schedule a randomly selected task,
at the priority of the donating task. SRAND performs sur-
prisingly well, providing fewer deadline misses than the tra-
ditional approach, demonstrating the effectiveness of early
slack donation. However, randomly allocating slack to tasks
is not optimal. The question of which task to donate slack
to is addressed in the next section.

3.2 Who to allocate slack to

The next question we examine is that of which task to
allocate the slack to. One possible solution is to just give it
to tasks that have overrun their budget. However, a task that
is going to overrun its budget may not have done so at the
time that the slack is available, and thus may not yet know
that it needs slack.

This problem is illustrated in Figure 2(a). All three tasks
are again released at time 0 and the deadline and reserva-
tions are as in Figure 1: Task 1 has a period of 6 and a
reservation of 1.5 time units, Task 2 has a period of 8 and
a reservation of 4 times units, and Task 3 has a period of
10 and a reservation of 2.5 times units. This time, however,
Task 1 only needs 1 time unit to complete its processing,
generating .5 units of slack, while Task 2 overruns its bud-
get, requiring 4.5 time units to complete. Principle 1 does
not necessarily help in this situation because at the time that
the slack is available from Task 1, Task 2 does not need any
slack, and thus may not receive any.

The solution to this problem, as illustrated in Figure 2(b),
is to provide the slack to Task 2 as soon as it is available,
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Figure 2. Who to allocate slack to

even though it has not yet overrun its budget. This allows
Task 2 to use both its allocated resources and the slack gen-
erated by Task 1 to meet its deadline at time 8. Again, be-
cause Task 2 uses the resources of Task 1 at the priority of
Task 1, it does not interfere with Task 3 and all tasks meet
their deadlines, preserving the correctness of the schedule.
This leads to Principle 2.

Principle 2. Allocate slack to the task with the highest pri-
ority (earliest deadline).

Principle 2 says that not only should the system immedi-
ately make the slack available to other processes, as speci-
fied by Principle 1, but it should give it preemptively to the
task with the earliest deadline. The reasoning behind this is
that the server with the earliest deadline is the most critical,
by virtue of being closest to its deadline, and thus the least
likely to benefit from any later donations of slack. If any
task will overrun its budget, the first one to do so is likely to
be the one with the earliest deadline. In that case, the slack
given to it will increase the likelihood that it will be able
to meet its deadline. And if it does not overrun its budget,
then it will complete sooner and it will itself have slack that
can be allocated to the task with the next earliest deadline,
and so on. This provides slack uniformly to many tasks, in
order of deadline, carrying it forward until it is needed.

In a system based on EDF, the information needed to
implement this principle is easily accessible. The task to re-
ceive the slack is always the next task to be scheduled. Be-
fore consuming its own budget, the task will consume any
remaining budget of the donating task. Should a higher-
priority task interrupt the task, it will consume any remain-
ing slack from the donating process before consuming its
own budgeted resources.

Our SLAD SLAck Donation algorithm, described in
Section 4.3 implements Principles 1 and 2. It allocates
slack as soon as it is available, to the process with the ear-
liest deadline, with the priority of the donating task. SLAD
always outperforms SRAND, demonstrating the effective-
ness of Principle 2. SLAD also outperforms CBS and some
other algorithms using the early-release mechanism, but the
early-release idea has additional benefits, as discussed inthe
next section.

3.3 Borrowing from the future

In CBS, IRIS, RBED, and BEBS, when a task overruns
the resources allocated for its current job, its budget is re-
plenished and its deadline is advanced one period. This al-
lows the current job to borrow from the budget reserved for
the task’s next job. If the subsequent job underruns its bud-
get by at least the amount borrowed for the current job, then
this borrowing caused no problems. If the subsequent job
needs more resources, it may itself borrow from the job after
it. In this way, tasks whose actual execution varies around
an average-case estimate may meet far more deadlines. Be-
cause the resources borrowed from future executions of the
task are executed at the priority of the following job (i.e.
with that job’s deadline), this borrowing preserves the cor-
rectness of the schedule.

Although SLAD generally outperforms CBS, it can still
be useful to allow a job that overruns its budget to borrow
budget from a future job of the same task when no slack is
currently available. This is illustrated in Figure 3(a). Task
1 has a budget of 1.5 and a period of 3, Task 2 has a budget
of 1 and a period of 8, and Task 3 has a budget of 3 and a
period of 8. Tasks 2 and 3 always use their budget, but job 1
of Task 1 needs 2 time units to complete, while job 2 needs
only 1. Because no task has any slack to donate to job 1 of
Task 1, Task 1 misses its first deadline.

The solution to this problem is illustrated in Figure 3(b).
The budget of job 1 of Task 1 can be replenished with the
budget of job 2 of Task 1, and the deadline extended to that
of job 2. Because job 2 of Task 1 has an earlier deadline than
the current jobs of Tasks 2 and 3, job 1 of Task 1 continues
to execute and meets its deadline. Because Job 2 needs less
than its full allocation, it also completes before its deadline.
The correctness of the schedule is preserved because job 1
of Task 1 uses the resources of job 2 with the priority (i.e.
deadline) of job 2. This gives us Principle 3:

Principle 3. Allow tasks to borrow against their own fu-
ture resource reservations (with the priority of the job from
which the resources are borrowed) to complete their current
job.

Principle 3 says that in addition to donating slack to the
task with the earliest deadline as soon as it is available, as
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Figure 3. Borrowing from the future

specified by Principles 1 and 2, we should also allow tasks
to borrow against their own future allocations, as in CBS,
IRIS, RBED, and BEBS.

Strictly speaking, this principle is about the scheduling
of potential future slack; resources are borrowed from fu-
ture jobs of the same task in the hope that the resources will
turn out to have been slack. This principle in effect says:
always deal with the most critical job of a task first. When
a job overruns its budget, we know that it needs more re-
sources. Allowing it to use resources allocated to the next
job of the same task, with the priority of that job, cannot hurt
any other task, and may help the current job of the overrun
task. Of course, borrowing resources from the future may
cause future jobs to miss deadlines. But we know that if we
don’t borrow, the current job will miss its deadline, while
if we do borrow, the next job may use less resources than it
was allocated or get slack from another process—because
its deadline is later, it is more likely to get slack than the
current job.

This principle is straightforward to implement. Once a
task’s budget is depleted, it is immediately recharged and
current deadline is extended to the next deadline. Once
the deadline has been extended, the system continues to
be scheduled with EDF. The deadline extension mechanism
provides resource isolation and prevents any violation to
other servers, preserving the feasibility of the schedule.

Principle 3 alone may cause two problems. The first is
that a task whose deadline has been extended may miss an
opportunity for slack donation, as occurs in CASH. Accord-
ing to Principle 2, slack is always allocated to the task with
the highest priority (i.e. earliest deadline). A task whose
deadline has been extended has effectively had its priority
lowered, possibly below that of another task, in which case
any slack that comes available will be given to that other
task. This takes slack away from the very task that needs it
the most—the one that already used up its original resource
allocation.

This problem may be addressed by a slight modification
to Principle 2:

Revised Principle 2. Allocate slack to the task with the
highest priority (earliestoriginal deadline).

The revised Principle 2 says that slack should always be

allocated to the task with the earliest original deadline re-
gardless of whether or not that task has been dynamically
assigned a new extended deadline. Implementing this re-
vised Principle 2 requires a little more record-keeping to
keep track of both the original and extended deadlines, but
the overhead is negligible.

Our SLASH (SLAD + CASH) algorithm, described in
Section 4.4, implements Principles 1, 2, and 3. It allocates
slack as soon as it is available, to the task with the earli-
est original deadline, and allows jobs to borrow from future
jobs of the same task. SLASH generally outperforms both
SRAND and SLAD. However, it introduces another prob-
lem. This problem and its solution are discussed in the next
section.

3.4 Donating to the past

Even with the revised Principle 2, Principle 3 introduces
another problem. A task which has used up its budget, bor-
rowed resources from a future job, and then completed the
job may not be eligible for slack, even though it has already
demonstrated the need for the slack (and, effectively, has al-
ready used it). The reason is that the job has completed and
is no longer in the EDF task queue, so is not even consid-
ered for donation by the slack scheduling algorithm.

This problem is illustrated in Figure 4(a). The tasks are
the same as in Figure 3: Task 1 has a budget of 1.5 and a
period of 3, Task 2 has a budget of 1 and a period of 8, and
Task 3 has a budget of 3 and a period of 8. This time, how-
ever, we assume that both jobs 1 and 2 of Task 1 need their
full allocation of 2 time units and Task 2 requires only .5
time units to meets its deadline. At time 1.5 when Task 1
needs slack, no slack is yet available from Task 2 so, apply-
ing Principle 3, job 1 of Task 1 is allowed to borrow from
job 2 of Task 1 (with the priority of job 2) to meet the dead-
line of job 1 at time 3. At time 2, job 1 of Task 1 completes
and Task 1 idles until its next release time at time 3. At time
2.5, Task 2 completes with .5 units of slack time. As Task 3
is the only one that is active, it receives the slack from Task
2. Then, at time 3, job 2 of Task 1 is released with deadline
of 6 and a budget of 1 time unit (depleted due to borrowing
by job 1). Task 1 runs from time 3 to time 4, consuming
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Figure 4. Donating to the past

its entire depleted budget. It then recharges its budget and
extends its deadline to time 9. Because Task 3 has an earlier
deadline, it runs until time 6.5, at which time it finishes with
.5 units of slack (the slack carried forward from Task 2). It
now gives the slack to Task 1, but it is too late to help—Task
1 missed its deadline at time 6.

The problem is that, although Task 1 needed slack, it
completed the slack-consuming job by borrowing from its
next job before the slack was available and the next job
(with depleted budget) has not yet been released, making
it ineligible to receive slack. The solution to this problem,
as illustrated in Figure 4(b), is for Task 2 to give the slack
generated at time 2.5 to Task 1, which has already demon-
strated the need for slack. This allows job 2 of Task 1 to
meet its deadline at time 6. This leads to Principle 4:

Principle 4. Retroactively allocate slack to tasks that have
borrowed from their current budget to complete a previous
job.

In effect, this principle says that a task that borrows from
a future job to complete its current job should remain eli-
gible to receive slack with the priority of its original (unex-
tended) deadline. Having demonstrated the need for slack,
this task should receive slack before currently executing
jobs with deadlines later than its original deadline. This
slack back-donation principle guarantees that any deadline
extension of a task’s job should not affect the slack donation
mechanism.

This principle is an EDF version of the mechanism im-
plemented in HisReWri. HisReWri operates on static prior-
ity rate monotonic schedules, but effectively does the same
thing: tasks that previously consumed slack are eligible to
receive future slack donations. Implementing this princi-
ple requires that the system maintain information about re-
cently completed jobs that consumed slack. Alternatively,
it can keep information about any depleted budgets, and the
deadlines of the jobs that did the depleting. With this in-
formation, slack can be back-donated according to the EDF
principle used for regular slack donation.

Our BACKSLASH algorithm, discussed in Section 4.4,
implements this principle, in addition to Principles 1, 2, and
3. It allocates slack as early as possible, to the task with the

earliest deadline, allows borrowing from future jobs of the
same task, and allows jobs that have borrowed from future
jobs of the same task to remain eligible for slack donations
that occur before their original deadline. Our results show
that BACKSLASH, which implements all four principles,
generally outperforms all of the other slack scheduling al-
gorithms we examined.

4 Implementation details

This section presents details of the implementation of
our slack schedulers.

4.1 Task model

Like RBED, VRE, and BEBS, our real-time system uses
an integrated scheduler for hard, soft, and non-real-time
processes. The low-level scheduler is earliest deadline first
(EDF [14]). Processes use the scheduler by associating their
tasks with a rate-based server.

4.2 Rate-based server and EDF scheduling

Resource allocation is achieved usingrate-based
servers, which are conceptually similar to those of CBS,
BEBS, and other bandwidth servers. A server is charac-
terized by a reservation tuple(Bs,Ps), whereBs is the ex-
ecution budget andPs is the period (both in units of time).
The server utilization isUs = Bs

Ps
. A dynamic deadlineds,k

(wherek is the period index) occurs at the end of each pe-
riod.

Each hard or soft real-time task is associated with its
own server. Periodic and aperiodic best-effort tasks are
scheduled as soft real-time tasks. All other best-effort tasks
are served by a single server (called BEServer) in a time-
sharing fashion. The configurations of the servers for the
different kinds of tasks are as follows:

• Hard real-time : Bs is the worst-case execution time
(WCET) andPs is the period (for periodic tasks) or
inter-arrival rate (for aperiodic tasks). Every hard real-
time task is guaranteed to receive its worst-case CPU



budget in every period. The total utilization of hard
real-time servers isUHRT .

• Soft real-time: Bs may be less than the worst case ex-
ecution time (e.g., average case execution time) and
Ps is the period (for periodic tasks) or minimum inter-
arrival time (for aperiodic tasks). Every task is guar-
anteed a minimum CPU budget per period, allow-
ing good average performance, though some jobs may
miss deadlines. A job whose deadline has been missed
may be dropped or may continue to run in the next
server period, depending upon the task. The total uti-
lization of soft real-time servers isUSRT.

• Best-effort: PBE is set to provide good responsiveness
based on the system load, andBBE =UBE×PBE, where
UBE is the unreserved utilization(1−UHRT −USRT).

The scheduling algorithm used in our system is earliest-
deadline first (EDF). Since the system enforces (UHRT +
USRT +UBE) ≤ 1 at all times, it always guarantees that all
deadlines of all servers will be met. Because the budget
Bs of the server for every admitted hard real-time task is
always set to the task’s WCET, this guarantees that all hard
real-time deadlines will always be met. Other (e.g., soft
real-time) tasks deadlines may or may not be met depending
upon their servers’ budgets and the availability and effective
use of dynamic slack.

Under EDF, the server with the earliest deadline becomes
eligible to pick its next pending job to run on the CPU. If a
server has consumed less than its budget and has no pending
tasks to execute, the remaining budget is slack and may be
donated to another server.

To ensure a feasible schedule under EDF, a task must not
overrun its server’s reservation. Our system uses a one-shot
timer to prevent task overrun. Upon task execution, if it
reaches its server’s reservation (by using up its budget), the
one-shot timer interrupt handler will preempt the task and
take the actions specified by the specific server scheduling
algorithm (described in the following subsections).

4.3 SRAND and SLAD

SRAND implements Principle 1—it donates slack as
early as possible. Whenever a server generates slack,
SRAND randomly selects another active server (whose
deadline is necessarily greater than that of the current tasks)
to execute with the remaining budget of the donating server.

The SLAck Donation (SLAD) slack scheduling algo-
rithm implements Principles 1 and 2—it donates slack as
early as possible, to the task with the earliest deadline.
SLAD was designed for periodic tasks, although it also
works for aperiodic tasks. In SLAD, a rate-based server has
four states:idle, waiting, runningandexpired. The SLAD
algorithm is as follows:

1. When a new task arrives, a new server is created for it
and its parameters(Bs,Ps) are initialized as described
in Section 4.2. The server state is set toidle.

2. When a new job arrives it is enqueued in the server
queue. If the server isidle, its deadlineds,k is set to the
current time and a new period starts.

3. At the beginning of a server period, the current budget
of a servercs is set to its reservation budgetBs, its dy-
namic deadlineds,k+1 is set tods,k +Ps, and its state is
set towaiting.

4. Thewaiting server with the earliest deadline becomes
running. If there is nowaiting or runningserver, the
system becomes idle and the idle time is donated to the
same task as described in step 5.

5. A runningserver executes its pending task on the CPU
until it has finished its task or consumed its budget,
and decreases its budgetcs by the actual amount of
CPU consumed. If it has no pending task, it donates
any remaining budget to:

(a) the task of the server in thewaitingor expiredstate
with the earliest deadline; or, if none exist, to

(b) the idle task

6. Whencs of a running server equals zero, if there is
a pending job, its state is set toexpireduntil the start
of the next period, atds,k+1, at which time step 3 is
repeated; otherwise, its state is set toidle until a new
job arrives.

7. When arunningserver is preempted, its state is set to
waiting.

4.4 SLASH and BACKSLASH

Ideally, we would like to donate slack to the soft real-
time tasks that need it the most, and execute overrun tasks
as early as possible (so that they improve their chance of
meeting deadlines) by not forcing a server to remain in-
active when its budget is consumed. SLASH and BACK-
SLASH address these two desires by improving the SLAD
EDF-based slack donation mechanism with Principles 3 and
4 (as well as the Revised Principle 2).

Unlike SLAD, SLASH and BACKSLASH have noex-
pired state. When a server consumes its budget, the bud-
get is recharged, its deadline is advanced by one period,
and its state is reset towaiting. To implement the revised
Principle 2, SLASH and BACKSLASH use earliest virtual
deadline first (EVDF) for slack scheduling decisions. The
virtual deadline, which is theoriginal deadline, of a server
is calculated as follows:

vds,k = ds,k−
⌊

ds,k− t

Ps

⌋

Ps



wheret is current time (note that the conditionsds,k > t and
vds,k ≤ ds,k always hold). While a server’s deadline may
be extended upon expiration, the virtual deadline remains
unchanged until the server’s job completes.

The detailed algorithm of SLASH differs from SLAD
(described in Section 4.3) in the following manner:

1. In step 2, if the server isidle andcs ≥ (ds,k− t)Us, ds,k

is set to current timet and a new period starts.

2. In step 5, for therunning servers without a pending
task: ifvds,k < ds,k, the server’s state is set toidle; oth-
erwise the servers donates slack using EVDF sched-
ule, i.e. it donates any remaining budget to the task of
anotherwaiting server with the earliestvirtual dead-
line (instead of earliest deadline).

3. In step 6, whencs of a runningserver becomes zero, if
there is a pending job, the server is recharged with full
budgetcs = Bs, its deadline is incrementedds,k+1 =
ds,k + Ps, and its state is reset towaiting (or remains
running if it still has the earliest deadline); otherwise,
its state is set toidle until a new job arrives.

The modification to step 6 allows an expired server to
borrow from its future budget and remain in thewaiting
or runningstate. However, under the modified rule, a task
whose server has already borrowed some budget from the
future would have been donated slack but missed the op-
portunity. The modifications of step 5, maintains the orig-
inal slack donation mechanism (as in SLAD) regardless of
whether the server has borrowed from its future budget. The
modification to step 2 allows SLASH to support aperiodic
task arrivals.

In order to support slack back-donation, BACKSLASH
uses a back-donation queueQ which contains the servers
that have borrowed budget from their future. The detailed
algorithm of BACKSLASH is similar to SLASH except
BACKSLASH guarantees the task that should have been
donated the slack will be retroactively donated the slack,
which is shown in a modification tostep 5of the SLASH
algorithm:

1. In step 5, for therunningserverswithout pending task:
if vds,k < ds,k, the server’s state is set toidle and if
cs < Bs (whenvds,k < ds,k is true), the servers is en-
queued in the back-donation queueQ in virtual dead-
line order; otherwise the servers is scheduled as fol-
lows until its budget is gone:

(a) if Q is empty, it donates slack using EVDF sched-
ule as in the SLASH algorithm; otherwise

(b) it starts back-donating: it runs the next task whose
server is not slack server and has the earliest dead-
line (i.e. using a normal EDF but not slack sched-
ule); when running, decreasing the budget of the
slack servers and the budget of the server of the

running task by the same amount of CPU con-
sumed while increasing the budget (up to the same
amount) of the first serversevd in Q (If csevd ==
Bsevd, sevd is dequeued fromQ and it is assigned
the next available server inQ).

5 Performance evaluation

We implemented SRAND, SLAD, SLASH and BACK-
SLASH in the Linux 2.6 kernel. For comparison, we
also implemented CBS, CASH, IRIS, BEBS, and “EDF”, a
reservation-based EDF algorithm that, when all other tasks
are idle, allocates slack to the task with earliest deadline.
Our test machine was a 1 GHz Intel Pentium 3.

Our results showed that hard real-time tasks frequently
missed their deadlines with IRIS. Even when all hard real-
time tasks met their deadlines, the performance of soft real-
time tasks was worse than in most of the other algorithms.
BEBS performed better than IRIS, but similar to CASH. For
clarity, BEBS and IRIS were left out of our performance fig-
ures. In addition, because we are concerned with the effect
of slack allocation on the performance of the soft real-time
tasks, our figures show only those tasks.

5.1 Performance metrics

Our metrics for soft real-time performance aredeadline
miss ratio(DMR)—the ratio of deadlines missed to the to-
tal number of periods (jobs)—andtardiness(TRD)—the ra-
tio of the total accumulated lateness for all jobs to the total
length of all periods. Lateness is 0 for jobs finishing on or
before their deadlines, and the amount by which the job has
missed its deadline for any job finishing after its deadline.

The deadline miss ratio and tardiness for a set of soft
real-time tasks can be computed in two ways: averaged over
the tasks, treating alltasksas equally important, or over the
entire experiment, treating alldeadlinesas equally impor-
tant. Which one is more important depends upon the goals
of the system and the behavior of the algorithms differs
somewhat under these two different set of metrics so we
have chosen to present both. Interestingly, our algorithms
do somewhat better using the second set of metrics.

Average Deadline Miss Ratio (ADMR) and Average Tar-
diness (ATRD) average DMR and TRD over the tasks and
are defined as follows:

• ADMR=
Σi

1dmri
n , wheredmri is the deadline miss ratio

of soft real-time taskTi .

• ATRD=
Σi

1trdi
n , wheretrdi is the tardiness of soft real-

time taskTi .

Overall Deadline Miss Ratio (ODMR) and Overall Tar-
diness (OTRD) average DMR and TRD over all periods and
are defined as follows:



• ODMR=
Σi

1ndmi

Σi
1npi

, wherendmi is the total number of

deadlines missed (i.e. ndmi = dmri ·npi) andnpi is the
total number of periods of taskTi .

• OTRD=
Σi

1(trdi ·npi)

Σi
1npi

.

ODMR and OTRD treat alldeadlinesas equally important.

5.2 Workloads

Although we have conducted extensive comparisons, in
the interest of brevity we discuss two representative work-
loads: fixed task sets and random tasks sets. We first in-
vestigate the effect of load and period on the performance
of fixed sets of soft real-time tasks. Then we use extensive
random workloads to demonstrate the overall and average
performance of soft real-time tasks.

All of the real-time workloads for our tests were gen-
erated using a tool we developed for the purpose. Given
a specification of a period (or minimum inter-arrival time)
and execution time (worst-case execution time (WCET) or
average-case execution time(ACET)), the tool generates pe-
riodic hard real-time or soft real-time tasks with constantor
variable (with a normal distribution) execution times.

In all of our experiments, the actual execution timee of
a task is a random value drawn from one of the following
distributions:

1. NW(µ) =







1√
2πe

− (x−µ)2

2σ2 , 0 < x≤ µ

0, x≤ 0 orx > µ
a normal distribution (with meanµ and standard de-
viation σ = 0.1µ) except for the values that are non-
positive or greater thanµ.

2. NA(µ) =







1√
2πe

− (x−µ)2

2σ2 , 0 < x

0, x≤ 0
a normal distribution with meanµ and standard devia-
tion σ = 0.1µ, except for the non-positive values.

Since we are focusing on the performance of real-time
applications in a mixed environment we arbitrarily reserve
a minimum of 2% of the CPU for best-effort tasks, enough
to provide a functional interactive system for running com-
mand shells during the experiments.

5.3 Performance results with fixed workloads

In the fixed workload experiments, we change one or two
task parameters (such as execution budget or period) while
keeping the other parameters and workload characteristics
fixed. This allows us to investigate the robustness of the
slack scheduling algorithms to changes in these parameters.

5.3.1 Load effect on performance

The first experiment shows soft real-time performance as
a function of system load. The workload consists of two
periodic hard real-time tasks and one periodic soft real-time
task, given in Table 1 (the time units for all task parameters
in this section are in milliseconds).

Table 1. Workload 1
Task Task Server Parameter

Parameters Parameters Adjustment
e= f (ē) p B = ē P = p U = B

P ∆(ē) ∆(U )
HRT1 258 600 258 600 43% +12 +2%
HRT2 NW(175) 350 175 350 50% -14 −4%
SRT3 NA(15) 300 15 300 5% +6 +2%

In this workload HRT1 has constant execution time equal
to its server budget, HRT2 has normally distributed ex-
ecution times with its server budget equal to its WCET,
and SRT3 has normally distributed execution times with its
server budget set to its ACET. SRT3 will often overrun its
budget but should still be able to meet most of its deadlines
by taking advantage of the slack from HRT2 and borrowing
its own future budget as necessary.

Figure 5 shows the deadline miss ratio and tardiness2 of
SRT3 as a function of its task load ranging from 5% to
25% under each of the slack scheduling algorithms, with
total server load equal to 100% with 2% reserved for best-
effort tasks. Figure 5(a) shows that (1) SRAND outper-
forms EDF, demonstrating the benefit of donating slack at
the earliest possible time, (2) SLAD outperforms SRAND,
demonstrating the additional benefit of donating slack to
the task with the earliest deadline, (3) SLASH outperforms
SLAD, demonstrating the effectiveness of allowing jobs to
borrow from future jobs of the same task, (4) BACKSLASH
slightly outperforms SLASH, demonstrating the effective-
ness of slack back-donation, and (5) BACKSLASH out-
performs all of the other algorithms we examined. It re-
duces the deadline miss ratio of SRT3 to zero until SRT3’s
load exceeds 17% and in the worst scenarios still reduced
SRT3’s deadline miss ratio by about 21% compared to CBS
or CASH. Unsurprisingly, all of the algorithms perform bet-
ter when the load of SRT3 is low (i.e. the load of the HRTs
is high and the amount of available slack is large), and per-
form worse as the load of SRT3 increases.

Figure 5(b) shows the tardiness of SRT3 under each of
the slack scheduling algorithms. The results are similar to
the deadline miss ratio results, except that SLAD has less
tardiness than BACKSLASH when SRT3’s load is equal to
25%. This is because SLAD may cause a soft real-time task
to miss more deadlines by smaller amounts, while BACK-
SLASH may cause it to miss fewer deadlines but by larger
amounts.

2With only one soft real-time task ADMR=ODMR and ATRD=OTRD.
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Figure 5. Load effect on performance (one soft real-time tas k, p = 300ms)
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Figure 6. Period effect on performance (one soft real-time t ask, u = 50%)

5.3.2 Period effect on performance

The second experiment shows soft real-time performance as
a function of server period. The workload consists of five
periodic hard real-time tasks and one periodic soft real-time
task, given in Table 2.

Table 2. Workload 2
Task Task Server Parameter

Parameters Parameters Adjustment
e= f (ē) p B P U = B

P ∆(ē) ∆(p)
HRT1 NW(20) 200 20 200 10% 0 0
HRT2 NW(30) 300 30 300 10% 0 0
HRT3 NW(40) 400 40 400 10% 0 0
HRT4 NW(50) 500 50 500 10% 0 0
HRT5 NW(48) 600 48 600 8% 0 0
SRT6 NA(30) 60 30 60 50% +20 +40

In this workload, every hard real-time task has normally
distributed execution times with server budgets set to their
WCET. SRT6 has normally distributed execution times with
its server budget set to its ACET. The first four hard real-
time tasks each reserve 10% of the CPU, the last one re-
serves 8%, and SRT6 reserves the remaining 50%.

Figure 6 shows SRT6’s performance as a function of pe-
riod ranging from 60ms to 380ms. The results again demon-
strate that (1) SRAND outperforms EDF, verifying princi-
ple 1, (2) SLAD outperforms SRAND, verifying principle
2, (3) SLASH outperforms SLAD, verifying principle 3, (4)
BACKSLASH always slightly outperforms SLASH, verify-
ing principle 4, and (5) BACKSLASH always outperforms
all of the other algorithms, again reducing the deadline miss
ratio by 100% in the best case.

5.4 Performance results with random workloads

The purpose of our random workloads is to show how
well each algorithm performs in different dynamic ran-
dom scenarios in which the number of hard real-time and
soft real-time tasks, the task model (periodic or aperiodic)
and the tasks’ parameters (periods or minimum inter-arrival
time, and execution budget) all differ. The periods and exe-
cution budgets vary randomly from 1 ms to 1000 ms. These
workloads allow us to study the average performance of dif-
ferent slack scheduling algorithms.

The first random workload consists of 12 task sets, each
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Figure 7. random workloads with 8 tasks

of which has 8 periodic tasks with a random distribution of
hard and soft real-time tasks. Each task has random load
and period such that the total load is high enough to over-
load the CPU. The second random workload is the same as
the first one except that all the tasks are generated randomly
in aperiodic or periodic mode (called aperiodic task sets for
simplicity). We run each task set for 100 seconds and mea-
sure the performance on average using both metrics.

Figure 7 shows the performance of the different slack
scheduling algorithms on the random workloads. The per-
formance results for the first random workload (Figures 7(a)
and (b)) are very similar to those for the fixed workloads.
BACKSLASH again outperforms all other algorithms ex-
cept that SLAD has lower average tardiness than SLASH
and BACKSLASH. Compared to CBS and CASH, BACK-
SLASH achieves respectively 88% and 44% lower average
deadline miss ratio and 90% and 58% lower average tar-
diness (BACKSLASH achieves even better performance in
terms of overall deadline miss and overall tardiness).

The performance results on the aperiodic workload (Fig-
ures 7(c) and (d)) are similar to those for the periodic ran-
dom workload, with a few notable differences. In gen-
eral, BACKSLASH outperforms all the other algorithms in
terms of both average/overall deadline miss ratio and aver-

age/overall tardiness. In the best scenarios it achieves re-
spectively 65% and 66% lower average deadline miss ra-
tio and 77% and 86% lower average tardiness compared to
CBS and CASH. SLAD does not perform well in terms of
deadline miss ratio for aperiodic task sets although it does
well for periodic task sets; however it always has lower tar-
diness than CBS and CASH. Although CBS is designed for
both periodic and aperiodic tasks, it achieves much better
performance with aperiodic task sets. CASH is designed
for periodic tasks, so it performs much better with them than
with aperiodic tasks.

Additional experiments (not shown) are consistent with
these results. The exact performance depends upon the load
ratio of the slack-donating and slack-consuming tasks, but
in general BACKSLASH outperforms all other algorithms.

We also measured kernel overhead in terms of total
scheduling time spent in the schedule() function and total
context switch time incurred, during a 100s run for a task
set with nine tasks used in the last random workload (not
shown). Our results indicated that the overhead for all algo-
rithms was similarly acceptable, averaging around .06% of
the CPU.



6 Conclusion

We have presented a set of principles for effective slack
management in an EDF-based system that supports mixes
of hard real-time, soft real-time and best-effort tasks:

Principle 1. Allocate slack as early as possible, with the
priority of the donating task.

Principle 2. Allocate slack to the task with the highest pri-
ority (earliestoriginal deadline).

Principle 3. Allow tasks to borrow against future resource
reservations (with the priority of the job from which the re-
sources are borrowed) to complete their current job.

Principle 4. Retroactively allocate slack to tasks that have
borrowed from their current budget to complete a previous
job.

We developed four slack scheduling algorithms,
SRAND, SLAD, SLASH and BACKSLASH, each adding
one principle to the previous algorithm. We implemented
them in the Linux 2.6 kernel and compared them to
CBS, CASH, (and IRIS and BEBS), and ”EDF”, a naive
hierarchical EDF-based slack management algorithm.

Our results show that each of our progressively modi-
fied algorithms performs better than the previous ones, with
BACKSLASH generally outperforming all others both in
terms of deadline miss ratio and tardiness. Compared to
CBS, and CASH, BACKSLASH reduces average deadline
miss ratio by 100% and 100% respectively in the best sce-
narios of our fixed workloads; and by 88% and 66% in
the best scenarios of our random workloads. Although de-
signed for our system, these techniques should work equally
well in any deadline-aware scheduler. In the future we plan
to investigate the applicability of these principles to static
priority schedulers.

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applica-
tions in hard real-time systems. InProceedings of the 19th
IEEE Real-Time Systems Symposium (RTSS 1998), pages 4–
13, Dec. 1998.

[2] S. Banachowski, T. Bisson, and S. A. Brandt. Integrating
best-effort scheduling into a real-time system. InProceed-
ings of the 25th IEEE Real-Time Systems Symposium (RTSS
2004), Dec. 2004.

[3] G. Bernat, I. Broster, and A. Burns. Rewriting history
to exploit gain time. InProceedings of the 25th IEEE
Real-Time Systems Symposium (RTSS 2004), pages 328–
335, Dec. 2004.

[4] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dy-
namic integrated scheduling of hard real-time, soft real-time
and non-real-time processes. InProceedings of the 24th
IEEE Real-Time Systems Symposium (RTSS 2003), pages
396–407, Dec. 2003.

[5] M. Caccamo, G. Buttazzo, and L. Sha. Capacity shar-
ing for overrun control. InProceedings of the 21th IEEE
Real-Time Systems Symposium (RTSS 2000), pages 295–
304, Dec. 2000.

[6] M. Caccamo, G. Buttazzo, and D. C. Thomas. Efficient re-
claiming in reservation-based real-time systems with vari-
able execution times.IEEE Transactions on Computers,
54(2):198–213, Feb. 2005.

[7] A. Colin and S. M. Petters. Experimental evaluation of code
properties for wcet analysis. InProceedings of the 24th
IEEE Real-Time Systems Symposium (RTSS 2003), pages
190–199, Dec. 2003.

[8] Z. Deng and J. W. Liu. Scheduling real-time applications
in an open environment. InProceedings of the 18th IEEE
Real-Time Systems Symposium (RTSS 1997), Dec. 1997.

[9] S. Goddard and L. Xu. A variable rate execution model.
In Proceedings of the 16th Euromicro Conference on Real-
Time Systems, pages 135–143, July 2004.

[10] The Institute of Electrical and Electronics Engineers. IEEE
Standard for Information Technology-Portable Operating
System Interface (POSIX)-Part 1: System Application Pro-
gramming Interface (API)-Amendment 1: Realtime Exten-
sion [C Language], Std1003.1b-1993 edition, 1994.

[11] G. Lamastra, G. Lipari, and L. Abeni. Bandwidth inheri-
tance algorithm for real-time task synchronization in open
systems. InProceedings of the 22nd IEEE Real-Time Sys-
tems Symposium (RTSS 2001), Dec. 2001.

[12] J. P. Lehoczky and S. Ramos-Thuel. An optimal algorithm
for scheduling soft-aperiodic tasks in fixed-priority preemp-
tive systems. InProceedings of the 13th IEEE Real-Time
Systems Symposium (RTSS 1992), pages 110–123, Dec.
1992.

[13] G. Lipari and S. Baruah. Greedy reclamation of unused
bandwidth in constant-bandwidth servers. InProceedings
of the 12th Euromicro Conference on Real-Time Systems,
pages 193–200, June 2000.

[14] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment.Journal
of the Association for Computing Machinery, 20(1):46–61,
Jan. 1973.

[15] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo. IRIS:
A new reclaiming algorithm for server-based real-time sys-
tems. In10th IEEE Real-time and Embedded Technology
and Applications Symposium (RTAS04), May 2004.

[16] J. Regehr and J. A. Stankovic. HLS: A framework for com-
posing soft real-time schedulers. InProceedings of the 22nd
IEEE Real-Time Systems Symposium (RTSS 2001), pages 3–
14, London, UK, Dec. 2001. IEEE.

[17] R. Santos, G. Lipari, and J. Santos. Scheduling open dy-
namic systems: The clearing fund algorithm. InProceed-
ings of the IEEE Real-Time Computing Systems and Appli-
cations, 2004.

[18] T.-S. Tia, J. W. Liu, and M. Shankar. Algorithms and opti-
mality of scheduling aperiodic requests in fixed-priority pre-
emptive systems.Real-Time Systems, 10(1), January 1996.

[19] V. Yodaiken and M. Barabanov. Real-time Linux. InPro-
ceedings of Linux Applications Development and Deploy-
ment Conference (USELINUX), Jan. 1997.


