
CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

Twizzler: Rethinking the Operating
System Stack for Byte-Addressable NVM

Professor Ethan L. Miller

Center for Research in Storage Systems (UCSC) & Pure Storage

Work done at CRSS

© 2021 Ethan L. Miller

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021)

❖ Modern operating systems were
designed for block-oriented I/O

‣ Go through the OS for each access to

persistent data: slow

‣ Sharing through memory is awkward

❖ We can do better!

‣ Implement a data-centric OS

‣ Keep the OS out of the data access path

❖ But the system must

‣ Allow sharing

‣ Enforce security
2

What’s wrong with the current OS stack?
Operating

systems
Operating

systems

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 3

Memory hardware trends

sys_read

~1 us 

Outdated interface

Persistent data should be operated on directly and like memory

~100–300 ns

Growing, becoming persistent

~1–10 ms 

No direct CPU access

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 3

Memory hardware trends

sys_read

~1 us 

Outdated interface

Persistent data should be operated on directly and like memory

~100–300 ns

Growing, becoming persistent

~1–10 ms 

No direct CPU access

Persistent memory (PM)

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 4

Different approaches for PM

App

PM

POSIX

read() 
write() mmap()

App

PM

POSIX

read() 
write()

PMDK

FS

App

PM

Twizzler

❖ Remove the kernel from
the persistence path

❖ Design for pointers that
last forever

❖ Provide strong and
flexible security

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 4

Different approaches for PM

App

PM

POSIX

read() 
write() mmap()

App

PM

POSIX

read() 
write()

PMDK

FS

App

PM

Twizzler

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 4

Different approaches for PM

App

PM

POSIX

read() 
write() mmap()

App

PM

POSIX

read() 
write()

PMDK

FS

App

PM

Twizzler

Processes and virtual addresses are the wrong abstraction!

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021)

❖ Data is the core concept in the OS

‣ All pointers consistent and valid in all threads

‣ Access still subject to security constraints

‣ All threads “see” data the same way: no per-process virtual address space

‣ Minimal per-thread state

❖ OS manages access to memory-based persistent data structures

‣ Leverages MMU to provide consistent view and security

❖ Privileged kernel can be very small!

5

The data-centric OS

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021)

Kernel space

❖ Object-based

‣ Object is a region of memory

‣ Single object: semantically-related data

❖ Minimal kernel

‣ Manages physical resources

‣ Manages MMU and scheduling

‣ Ensures security policies followed

❖ LibOS (libtwz)

‣ Most traditional OS functionality

implemented in user-space

❖ twix emulates POSIX
6

Our approach: Twizzler

Object

App

musl (libc)

twix

libtwz

Twizzler kernel

Memory-style 
direct access

POSIX access

Metadata 
management

Physical 
mapping

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 7

Data-centric programming
Persistent data should be operated on directly and like memory

A B

C AB

Process 1

Process 2 A B

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 7

Data-centric programming
Persistent data should be operated on directly and like memory

A B

C AB

Process 1

Process 2 A B

Pointers must be valid anywhere in any thread’s address space

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 7

Data-centric programming
Persistent data should be operated on directly and like memory

A B

C AB

Process 1

Process 2 A B

Pointers must be valid anywhere in any thread’s address space

Pointers may be cross-object: referring to data within a different object

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 7

Data-centric programming
Persistent data should be operated on directly and like memory

A B

C AB

Process 1

Process 2 A B

Pointers must be valid anywhere in any thread’s address space

Pointers may be cross-object: referring to data within a different object

object-id offset

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 8

Persistent pointers: format

object-id offset

Requirement: keep pointers 64-bits.

Avoids increasing hardware complexity and memory usage

Problem: object ID and offset are too big to fit

64 bits?

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 9

Persistent pointers: indirection

object-id offset

64 bits

object ID flags

Foreign Object Table

object ID flags

1

2
!!!

FOT Data

Object Layout

Pointers interpreted relative to the object in which they’re stored!

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 10

Persistent pointers: translation

0 <offset>

1 A rw-

2 B r--

O

FOT

FOT entry of 0 means “self” pointer—points within the same object.

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 10

Persistent pointers: translation

0 <offset>

1 A rw-

2 B r--

O

FOT

FOT entry of 0 means “self” pointer—points within the same object.

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 11

Cross-object persistent pointers

FOT entry of >0 means “cross-object”—points to a different object.

1 <offset>

1 A rw-

2 B r--

O

FOT

A

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 11

Cross-object persistent pointers

FOT entry of >0 means “cross-object”—points to a different object.

1 <offset>

1 A rw-

2 B r--

O

FOT

A

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 11

Cross-object persistent pointers

FOT entry of >0 means “cross-object”—points to a different object.

1 <offset>

1 A rw-

2 B r--

O

FOT

A

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 11

Cross-object persistent pointers

FOT entry of >0 means “cross-object”—points to a different object.

1 <offset>

1 A rw-

2 B r--

O

FOT

A

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021)

❖ Mapping should be transparent to
applications

❖ Virtual address space abstraction
does not fit with the object:offset
model

❖ User-level LibOS handles address
translation

‣ Currently done as inline function calls

(very fast)

‣ Could be inserted directly by compiler

12

Persistent pointers: API

Address Space: 264 (248 on x86_64)

O

FOT

A

??

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021)

❖ A view allows threads to define their virtual address space layout

‣ Thread requests objects at particular locations in a table shared with the OS: no system call!

‣ Kernel maps in the objects on a page fault if access is allowed

‣ Provides an ephemeral “window” to persistent objects with persistent pointers

❖ Sharing table between user space and kernel space reduces system calls

13

Ephemeral views of persistent objects

page-fault
VUser thread adds or

updates mappings
Kernel reads mapping to

construct page-table

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 14

Views: implementation

page-fault
VUser thread adds or

updates mappings
Kernel reads mapping to

construct page-table

A view allows user-space to define the virtual address space layout without a system call.

0 A r-x
slot # target flags

1 B rw-

m V rw-
...

A

r-x

B

rw- ... V

rw-

Virtual address space of view object V

A view is like a page table that the kernel uses to construct a real page-table

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 15

Security and access control

Thread T

S1

S2

S3

Threads run in
security contexts

A

rw-

B

r--

Access control per-object,
per security context

Threads can switch between security contexts

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 16

Why multiple security contexts?

Private
data

Program
code

Library
code

rw- r-x r-x

rw- r-x r-- r-- r-x

Basic permissions

“Trusted” context

Private
data

Program
code

Library
code

Private
data

Program
code

Library
code
r-x

“Untrusted” context

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 16

Why multiple security contexts?

Private
data

Program
code

Library
code

rw- r-x r-x

rw- r-x r-- r-- r-x

Basic permissions

“Trusted” context

Private
data

Program
code

Library
code

Private
data

Program
code

Library
code
r-x

“Untrusted” context

Say we’re running in the trusted context.

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 16

Why multiple security contexts?

Private
data

Program
code

Library
code

rw- r-x r-x

rw- r-x r-- r-- r-x

Basic permissions

“Trusted” context

Private
data

Program
code

Library
code

Private
data

Program
code

Library
code
r-x

“Untrusted” context

If we jump to library code, we’ll cause a trap.

The kernel will then jump the thread over to the untrusted context.

Say we’re running in the trusted context.

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 16

Why multiple security contexts?

Private
data

Program
code

Library
code

rw- r-x r-x

rw- r-x r-- r-- r-x

Basic permissions

“Trusted” context

Private
data

Program
code

Library
code

Private
data

Program
code

Library
code
r-x

“Untrusted” context

If we jump to library code, we’ll cause a trap.

The kernel will then jump the thread over to the untrusted context.

Say we’re running in the trusted context.

r--

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 17

Example: trusted vs. untrusted contexts

Private
data

Program
code

Library
code

rw- r-x r-x

rw- r-x r-- r-- r-x

Basic permissions

“Trusted” context

Private
data

Program
code

Library
code

Private
data

Program
code

Library
code
r-x

“Untrusted” context

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 17

Example: trusted vs. untrusted contexts

Private
data

Program
code

Library
code

rw- r-x r-x

rw- r-x r-- r-- r-x

Basic permissions

“Trusted” context

Private
data

Program
code

Library
code

Private
data

Program
code

Library
code
r-x

“Untrusted” context
Now, in the untrusted context, we cannot access the private data.

If we jump back to program code, and access private data, we’ll get a trap.

...and switch back to “trusted”.

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 17

Example: trusted vs. untrusted contexts

Private
data

Program
code

Library
code

rw- r-x r-x

rw- r-x r-- r-- r-x

Basic permissions

“Trusted” context

Private
data

Program
code

Library
code

Private
data

Program
code

Library
code
r-x

“Untrusted” context
Now, in the untrusted context, we cannot access the private data.

If we jump back to program code, and access private data, we’ll get a trap.

...and switch back to “trusted”.

r-x

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 18

Implementing views with multi-level mapping

Object A

r-x

Object B

rw-

Object A

rwx

Object B

r--

Object C

r--

X

Virtual
Space

Object

Space

Physical

Memory

DRAM NVRAM

Security
Context!

Virtual
address
spaces

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 18

Implementing views with multi-level mapping

Object A

r-x

Object B

rw-

Object A

rwx

Object B

r--

Object C

r--

X

Virtual
Space

Object

Space

Physical

Memory

DRAM NVRAM

Security
Context!

Object B

rw-

Object C

rw-

Virtual
address
spaces

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 18

Implementing views with multi-level mapping

Object A

r-x

Object B

rw-

Object A

rwx

Object B

r--

Object C

r--

X

Virtual
Space

Object

Space

Physical

Memory

DRAM NVRAM

Security
Context!

"#$%&'()%*'+,)-.

/0"-*)'1%23%"4$5

Object B

rw-

Object C

rw-

Virtual
address
spaces

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021)

❖ Users responsible for

‣ Setting up security policies

❖ Kernel responsible for

‣ Validating security policies

‣ Programming MMU to enforce policies

❖ How can we make this a secure
arrangement?

19

Managing security in Twizzler

User √

Kernel √ √

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021)

❖ Security policies are contained in
objects

❖ Access to objects controlled by
security policies

➡ Access to security policies
controlled by security policies!

20

Treat security policies as objects

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 21

Security policies encoded in capabilities

Target Accessor Permissions Gates Signature

Twizzler capability

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021)

❖ A security context is an object
containing capabilities

❖ A user has at least one security
context

❖ Code objects may have their own
security contexts Security Context

22

Security contexts in Twizzler

Target Accessor Permissions Gates Signature

Target Accessor Permissions Gates Signature

Target Accessor Permissions Gates Signature

Target Accessor Permissions Gates Signature

Target Accessor Permissions Gates Signature

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021)

❖ Each object has a public-private key pair

‣ Key pair need not be unique to the object

‣ Example: user might have half a dozen key
pairs

‣ Example: “system” might have a single key
pair

❖ Kernel can read public keys

❖ Capabilities signed by private keys

‣ Private keys kept in objects with access

control

‣ Need not be stored in the clear on the
system

23

Objects and keys

data

metadata

KUID

public

key

private

key

Key generation

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021)

❖ Public-key operations are indeed expensive (relatively)

❖ Mitigate the cost by

‣ Having the kernel cache results of PK operations (verifications)

‣ Having “default” permissions encoded directly in the object: especially important
for public code objects

24

Aren’t public key ops expensive?

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 25

Object ID as self-signature

data

metadata

mapped 
into

memory

object_ID = Hash (p_flags || nonce || kuid)

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021)

❖ Maximum permissions determined by union of

‣ Default object permissions

‣ Permissions granted by a specific (signed) capability

❖ Permissions limited by masks

‣ Security context can limit permissions to objects it could otherwise access: useful

in preventing accidental (or malicious) accesses

‣ This can be done per-object, or globally for a security context

‣ Code library that can only read most objects

‣ Exceptions for stack and perhaps heap

26

Use masks to limit permissions

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021)

❖ Object-level permissions OK for read & write

❖ Execute is different: limit “access points”

❖ Gates provide this limitation

‣ Specify start, length, alignment

‣ Jump into object must meet these criteria

❖ Use a trampoline for return from call to a different object
27

Gates

Target Accessor Permissions Gates Signature

Start Length Align

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021)

❖ Security can be specified by users without kernel intervention

‣ Capabilities are protected by cryptographic signatures

‣ Private keys need not be accessible to the kernel

❖ Kernel can validate signatures using public keys

‣ Public key identifiers generated by hashing as well (standard technique)

‣ No need to even know who signed a capability: don’t need to be local!

❖ Users can ask for any privileges they want

‣ Kernel only grants those that it can verify using capabilities

‣ Kernel programs the MMU to enforce these permissions

28

Implications for security

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021)

❖ Delegation

‣ Principal assigns a capability to another principal that may not already have

access

‣ Assignment can limit further delegation

‣ Assignment authenticated by signing with private key

❖ Revocation

‣ Capabilities may be time-limited

‣ Revocation by expiring capabilities

29

Further security issues

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021)

❖ Twizzler-style access works very well in distributed systems

‣ GUIDs are 128-bit, easily expandable to 256 bit without larger persistent pointers

‣ Access to objects is transparent to object physical location

‣ Cache object in local memory?

‣ Send accesses to remote memory?

❖ Security is scalable as well

‣ Capabilities can be verified by any kernel with the necessary public keys

‣ Currently no way to guarantee that remote kernel is trustworthy

‣ This is a very difficult problem

‣ Straightforward to reject writes to local objects without accompanying capabilities

30

Ongoing research: distributed PM systems

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021)

❖ Persistent memory requires direct access with minimal OS involvement

‣ Accesses must go directly to/from PM

‣ Kernel sets up the MMU and stays out of the way

❖ Programming model must allow easy sharing in a scalable system

‣ Security is an important part of that

❖ OS must enforce user-specified security

‣ Minimal implicit trust of security policies: rely on public-key encryption

‣ Maximal flexibility for user-level specification of policies

31

Conclusions

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 32

Remember…

SSDs only reached their true potential

when we stopped treating them like fast disks

and optimized for how they work.

Persistent memory will only reach its true potential

when we treat it as a single-level persistent store that 

supports direct byte-level access for computation and storage.

CENTER FOR
RESEARCH IN

STORAGE
S Y S T E M S

© 2021 Ethan L. Miller Twizzler: Rethinking the Operating System Stack for Byte-Addressable NVM (March 2021) 33

Questions?

Peter Alvaro

Darrell D. E. Long

Ethan L. Miller

Robert Soule

Pankaj MehraAllen Aboytes

Daniel Bittman

Barbara Moretto Dama

Vishal Shrivastav

Michael Usher

Students Faculty Industry

Research 
sponsors:

https://twizzler.io

